MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nulmbl Structured version   Visualization version   GIF version

Theorem nulmbl 25021
Description: A nullset is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.)
Assertion
Ref Expression
nulmbl ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → 𝐴 ∈ dom vol)

Proof of Theorem nulmbl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 484 . 2 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → 𝐴 ⊆ ℝ)
2 elpwi 4605 . . . 4 (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ)
3 inss2 4227 . . . . . . . . . 10 (𝑥𝐴) ⊆ 𝐴
4 ovolssnul 24973 . . . . . . . . . 10 (((𝑥𝐴) ⊆ 𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → (vol*‘(𝑥𝐴)) = 0)
53, 4mp3an1 1449 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → (vol*‘(𝑥𝐴)) = 0)
65adantr 482 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥𝐴)) = 0)
76oveq1d 7411 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) = (0 + (vol*‘(𝑥𝐴))))
8 difss 4129 . . . . . . . . . . 11 (𝑥𝐴) ⊆ 𝑥
9 ovolsscl 24972 . . . . . . . . . . 11 (((𝑥𝐴) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
108, 9mp3an1 1449 . . . . . . . . . 10 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
1110adantl 483 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥𝐴)) ∈ ℝ)
1211recnd 11229 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥𝐴)) ∈ ℂ)
1312addlidd 11402 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (0 + (vol*‘(𝑥𝐴))) = (vol*‘(𝑥𝐴)))
147, 13eqtrd 2773 . . . . . 6 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) = (vol*‘(𝑥𝐴)))
15 simprl 770 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → 𝑥 ⊆ ℝ)
16 ovolss 24971 . . . . . . 7 (((𝑥𝐴) ⊆ 𝑥𝑥 ⊆ ℝ) → (vol*‘(𝑥𝐴)) ≤ (vol*‘𝑥))
178, 15, 16sylancr 588 . . . . . 6 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥𝐴)) ≤ (vol*‘𝑥))
1814, 17eqbrtrd 5166 . . . . 5 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
1918expr 458 . . . 4 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ 𝑥 ⊆ ℝ) → ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
202, 19sylan2 594 . . 3 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ 𝑥 ∈ 𝒫 ℝ) → ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
2120ralrimiva 3147 . 2 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
22 ismbl2 25013 . 2 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))))
231, 21, 22sylanbrc 584 1 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → 𝐴 ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wral 3062  cdif 3943  cin 3945  wss 3946  𝒫 cpw 4598   class class class wbr 5144  dom cdm 5672  cfv 6535  (class class class)co 7396  cr 11096  0cc0 11097   + caddc 11100  cle 11236  vol*covol 24948  volcvol 24949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174  ax-pre-sup 11175
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-om 7843  df-1st 7962  df-2nd 7963  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-er 8691  df-map 8810  df-en 8928  df-dom 8929  df-sdom 8930  df-sup 9424  df-inf 9425  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-div 11859  df-nn 12200  df-2 12262  df-3 12263  df-n0 12460  df-z 12546  df-uz 12810  df-q 12920  df-rp 12962  df-ioo 13315  df-ico 13317  df-icc 13318  df-fz 13472  df-fl 13744  df-seq 13954  df-exp 14015  df-cj 15033  df-re 15034  df-im 15035  df-sqrt 15169  df-abs 15170  df-ovol 24950  df-vol 24951
This theorem is referenced by:  0mbl  25025  icombl1  25049  ioombl  25051  ovolioo  25054  uniiccmbl  25076  volivth  25093  mbfeqalem1  25127  itg10a  25197  itg2uba  25230  itgss3  25301  cntnevol  33157  voliunnfl  36437  volsupnfl  36438  cnambfre  36441  snmbl  44552
  Copyright terms: Public domain W3C validator