MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nulmbl Structured version   Visualization version   GIF version

Theorem nulmbl 24386
Description: A nullset is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.)
Assertion
Ref Expression
nulmbl ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → 𝐴 ∈ dom vol)

Proof of Theorem nulmbl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 486 . 2 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → 𝐴 ⊆ ℝ)
2 elpwi 4508 . . . 4 (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ)
3 inss2 4130 . . . . . . . . . 10 (𝑥𝐴) ⊆ 𝐴
4 ovolssnul 24338 . . . . . . . . . 10 (((𝑥𝐴) ⊆ 𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → (vol*‘(𝑥𝐴)) = 0)
53, 4mp3an1 1450 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → (vol*‘(𝑥𝐴)) = 0)
65adantr 484 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥𝐴)) = 0)
76oveq1d 7206 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) = (0 + (vol*‘(𝑥𝐴))))
8 difss 4032 . . . . . . . . . . 11 (𝑥𝐴) ⊆ 𝑥
9 ovolsscl 24337 . . . . . . . . . . 11 (((𝑥𝐴) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
108, 9mp3an1 1450 . . . . . . . . . 10 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
1110adantl 485 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥𝐴)) ∈ ℝ)
1211recnd 10826 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥𝐴)) ∈ ℂ)
1312addid2d 10998 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (0 + (vol*‘(𝑥𝐴))) = (vol*‘(𝑥𝐴)))
147, 13eqtrd 2771 . . . . . 6 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) = (vol*‘(𝑥𝐴)))
15 simprl 771 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → 𝑥 ⊆ ℝ)
16 ovolss 24336 . . . . . . 7 (((𝑥𝐴) ⊆ 𝑥𝑥 ⊆ ℝ) → (vol*‘(𝑥𝐴)) ≤ (vol*‘𝑥))
178, 15, 16sylancr 590 . . . . . 6 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥𝐴)) ≤ (vol*‘𝑥))
1814, 17eqbrtrd 5061 . . . . 5 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
1918expr 460 . . . 4 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ 𝑥 ⊆ ℝ) → ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
202, 19sylan2 596 . . 3 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ 𝑥 ∈ 𝒫 ℝ) → ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
2120ralrimiva 3095 . 2 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
22 ismbl2 24378 . 2 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))))
231, 21, 22sylanbrc 586 1 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → 𝐴 ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  wral 3051  cdif 3850  cin 3852  wss 3853  𝒫 cpw 4499   class class class wbr 5039  dom cdm 5536  cfv 6358  (class class class)co 7191  cr 10693  0cc0 10694   + caddc 10697  cle 10833  vol*covol 24313  volcvol 24314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-sup 9036  df-inf 9037  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-n0 12056  df-z 12142  df-uz 12404  df-q 12510  df-rp 12552  df-ioo 12904  df-ico 12906  df-icc 12907  df-fz 13061  df-fl 13332  df-seq 13540  df-exp 13601  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-ovol 24315  df-vol 24316
This theorem is referenced by:  0mbl  24390  icombl1  24414  ioombl  24416  ovolioo  24419  uniiccmbl  24441  volivth  24458  mbfeqalem1  24492  itg10a  24562  itg2uba  24595  itgss3  24666  cntnevol  31862  voliunnfl  35507  volsupnfl  35508  cnambfre  35511  snmbl  43122
  Copyright terms: Public domain W3C validator