![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nulmbl | Structured version Visualization version GIF version |
Description: A nullset is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.) |
Ref | Expression |
---|---|
nulmbl | ⊢ ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → 𝐴 ∈ dom vol) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → 𝐴 ⊆ ℝ) | |
2 | elpwi 4608 | . . . 4 ⊢ (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ) | |
3 | inss2 4228 | . . . . . . . . . 10 ⊢ (𝑥 ∩ 𝐴) ⊆ 𝐴 | |
4 | ovolssnul 24995 | . . . . . . . . . 10 ⊢ (((𝑥 ∩ 𝐴) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → (vol*‘(𝑥 ∩ 𝐴)) = 0) | |
5 | 3, 4 | mp3an1 1448 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → (vol*‘(𝑥 ∩ 𝐴)) = 0) |
6 | 5 | adantr 481 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥 ∩ 𝐴)) = 0) |
7 | 6 | oveq1d 7420 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) = (0 + (vol*‘(𝑥 ∖ 𝐴)))) |
8 | difss 4130 | . . . . . . . . . . 11 ⊢ (𝑥 ∖ 𝐴) ⊆ 𝑥 | |
9 | ovolsscl 24994 | . . . . . . . . . . 11 ⊢ (((𝑥 ∖ 𝐴) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∖ 𝐴)) ∈ ℝ) | |
10 | 8, 9 | mp3an1 1448 | . . . . . . . . . 10 ⊢ ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∖ 𝐴)) ∈ ℝ) |
11 | 10 | adantl 482 | . . . . . . . . 9 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥 ∖ 𝐴)) ∈ ℝ) |
12 | 11 | recnd 11238 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥 ∖ 𝐴)) ∈ ℂ) |
13 | 12 | addlidd 11411 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (0 + (vol*‘(𝑥 ∖ 𝐴))) = (vol*‘(𝑥 ∖ 𝐴))) |
14 | 7, 13 | eqtrd 2772 | . . . . . 6 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) = (vol*‘(𝑥 ∖ 𝐴))) |
15 | simprl 769 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → 𝑥 ⊆ ℝ) | |
16 | ovolss 24993 | . . . . . . 7 ⊢ (((𝑥 ∖ 𝐴) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ) → (vol*‘(𝑥 ∖ 𝐴)) ≤ (vol*‘𝑥)) | |
17 | 8, 15, 16 | sylancr 587 | . . . . . 6 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥 ∖ 𝐴)) ≤ (vol*‘𝑥)) |
18 | 14, 17 | eqbrtrd 5169 | . . . . 5 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) ≤ (vol*‘𝑥)) |
19 | 18 | expr 457 | . . . 4 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ 𝑥 ⊆ ℝ) → ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) ≤ (vol*‘𝑥))) |
20 | 2, 19 | sylan2 593 | . . 3 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ 𝑥 ∈ 𝒫 ℝ) → ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) ≤ (vol*‘𝑥))) |
21 | 20 | ralrimiva 3146 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) ≤ (vol*‘𝑥))) |
22 | ismbl2 25035 | . 2 ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) ≤ (vol*‘𝑥)))) | |
23 | 1, 21, 22 | sylanbrc 583 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → 𝐴 ∈ dom vol) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∖ cdif 3944 ∩ cin 3946 ⊆ wss 3947 𝒫 cpw 4601 class class class wbr 5147 dom cdm 5675 ‘cfv 6540 (class class class)co 7405 ℝcr 11105 0cc0 11106 + caddc 11109 ≤ cle 11245 vol*covol 24970 volcvol 24971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-q 12929 df-rp 12971 df-ioo 13324 df-ico 13326 df-icc 13327 df-fz 13481 df-fl 13753 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-ovol 24972 df-vol 24973 |
This theorem is referenced by: 0mbl 25047 icombl1 25071 ioombl 25073 ovolioo 25076 uniiccmbl 25098 volivth 25115 mbfeqalem1 25149 itg10a 25219 itg2uba 25252 itgss3 25323 cntnevol 33214 voliunnfl 36520 volsupnfl 36521 cnambfre 36524 snmbl 44665 |
Copyright terms: Public domain | W3C validator |