![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nulmbl | Structured version Visualization version GIF version |
Description: A nullset is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.) |
Ref | Expression |
---|---|
nulmbl | ⊢ ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → 𝐴 ∈ dom vol) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → 𝐴 ⊆ ℝ) | |
2 | elpwi 4604 | . . . 4 ⊢ (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ) | |
3 | inss2 4224 | . . . . . . . . . 10 ⊢ (𝑥 ∩ 𝐴) ⊆ 𝐴 | |
4 | ovolssnul 25367 | . . . . . . . . . 10 ⊢ (((𝑥 ∩ 𝐴) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → (vol*‘(𝑥 ∩ 𝐴)) = 0) | |
5 | 3, 4 | mp3an1 1444 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → (vol*‘(𝑥 ∩ 𝐴)) = 0) |
6 | 5 | adantr 480 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥 ∩ 𝐴)) = 0) |
7 | 6 | oveq1d 7419 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) = (0 + (vol*‘(𝑥 ∖ 𝐴)))) |
8 | difss 4126 | . . . . . . . . . . 11 ⊢ (𝑥 ∖ 𝐴) ⊆ 𝑥 | |
9 | ovolsscl 25366 | . . . . . . . . . . 11 ⊢ (((𝑥 ∖ 𝐴) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∖ 𝐴)) ∈ ℝ) | |
10 | 8, 9 | mp3an1 1444 | . . . . . . . . . 10 ⊢ ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∖ 𝐴)) ∈ ℝ) |
11 | 10 | adantl 481 | . . . . . . . . 9 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥 ∖ 𝐴)) ∈ ℝ) |
12 | 11 | recnd 11243 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥 ∖ 𝐴)) ∈ ℂ) |
13 | 12 | addlidd 11416 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (0 + (vol*‘(𝑥 ∖ 𝐴))) = (vol*‘(𝑥 ∖ 𝐴))) |
14 | 7, 13 | eqtrd 2766 | . . . . . 6 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) = (vol*‘(𝑥 ∖ 𝐴))) |
15 | simprl 768 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → 𝑥 ⊆ ℝ) | |
16 | ovolss 25365 | . . . . . . 7 ⊢ (((𝑥 ∖ 𝐴) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ) → (vol*‘(𝑥 ∖ 𝐴)) ≤ (vol*‘𝑥)) | |
17 | 8, 15, 16 | sylancr 586 | . . . . . 6 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥 ∖ 𝐴)) ≤ (vol*‘𝑥)) |
18 | 14, 17 | eqbrtrd 5163 | . . . . 5 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) ≤ (vol*‘𝑥)) |
19 | 18 | expr 456 | . . . 4 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ 𝑥 ⊆ ℝ) → ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) ≤ (vol*‘𝑥))) |
20 | 2, 19 | sylan2 592 | . . 3 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ 𝑥 ∈ 𝒫 ℝ) → ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) ≤ (vol*‘𝑥))) |
21 | 20 | ralrimiva 3140 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) ≤ (vol*‘𝑥))) |
22 | ismbl2 25407 | . 2 ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) ≤ (vol*‘𝑥)))) | |
23 | 1, 21, 22 | sylanbrc 582 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → 𝐴 ∈ dom vol) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ∖ cdif 3940 ∩ cin 3942 ⊆ wss 3943 𝒫 cpw 4597 class class class wbr 5141 dom cdm 5669 ‘cfv 6536 (class class class)co 7404 ℝcr 11108 0cc0 11109 + caddc 11112 ≤ cle 11250 vol*covol 25342 volcvol 25343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-n0 12474 df-z 12560 df-uz 12824 df-q 12934 df-rp 12978 df-ioo 13331 df-ico 13333 df-icc 13334 df-fz 13488 df-fl 13760 df-seq 13970 df-exp 14031 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-ovol 25344 df-vol 25345 |
This theorem is referenced by: 0mbl 25419 icombl1 25443 ioombl 25445 ovolioo 25448 uniiccmbl 25470 volivth 25487 mbfeqalem1 25521 itg10a 25591 itg2uba 25624 itgss3 25695 cntnevol 33756 voliunnfl 37043 volsupnfl 37044 cnambfre 37047 snmbl 45232 |
Copyright terms: Public domain | W3C validator |