| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nulmbl | Structured version Visualization version GIF version | ||
| Description: A nullset is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| Ref | Expression |
|---|---|
| nulmbl | ⊢ ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → 𝐴 ∈ dom vol) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → 𝐴 ⊆ ℝ) | |
| 2 | elpwi 4560 | . . . 4 ⊢ (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ) | |
| 3 | inss2 4191 | . . . . . . . . . 10 ⊢ (𝑥 ∩ 𝐴) ⊆ 𝐴 | |
| 4 | ovolssnul 25404 | . . . . . . . . . 10 ⊢ (((𝑥 ∩ 𝐴) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → (vol*‘(𝑥 ∩ 𝐴)) = 0) | |
| 5 | 3, 4 | mp3an1 1450 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → (vol*‘(𝑥 ∩ 𝐴)) = 0) |
| 6 | 5 | adantr 480 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥 ∩ 𝐴)) = 0) |
| 7 | 6 | oveq1d 7368 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) = (0 + (vol*‘(𝑥 ∖ 𝐴)))) |
| 8 | difss 4089 | . . . . . . . . . . 11 ⊢ (𝑥 ∖ 𝐴) ⊆ 𝑥 | |
| 9 | ovolsscl 25403 | . . . . . . . . . . 11 ⊢ (((𝑥 ∖ 𝐴) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∖ 𝐴)) ∈ ℝ) | |
| 10 | 8, 9 | mp3an1 1450 | . . . . . . . . . 10 ⊢ ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∖ 𝐴)) ∈ ℝ) |
| 11 | 10 | adantl 481 | . . . . . . . . 9 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥 ∖ 𝐴)) ∈ ℝ) |
| 12 | 11 | recnd 11162 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥 ∖ 𝐴)) ∈ ℂ) |
| 13 | 12 | addlidd 11335 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (0 + (vol*‘(𝑥 ∖ 𝐴))) = (vol*‘(𝑥 ∖ 𝐴))) |
| 14 | 7, 13 | eqtrd 2764 | . . . . . 6 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) = (vol*‘(𝑥 ∖ 𝐴))) |
| 15 | simprl 770 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → 𝑥 ⊆ ℝ) | |
| 16 | ovolss 25402 | . . . . . . 7 ⊢ (((𝑥 ∖ 𝐴) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ) → (vol*‘(𝑥 ∖ 𝐴)) ≤ (vol*‘𝑥)) | |
| 17 | 8, 15, 16 | sylancr 587 | . . . . . 6 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥 ∖ 𝐴)) ≤ (vol*‘𝑥)) |
| 18 | 14, 17 | eqbrtrd 5117 | . . . . 5 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) ≤ (vol*‘𝑥)) |
| 19 | 18 | expr 456 | . . . 4 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ 𝑥 ⊆ ℝ) → ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) ≤ (vol*‘𝑥))) |
| 20 | 2, 19 | sylan2 593 | . . 3 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) ∧ 𝑥 ∈ 𝒫 ℝ) → ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) ≤ (vol*‘𝑥))) |
| 21 | 20 | ralrimiva 3121 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) ≤ (vol*‘𝑥))) |
| 22 | ismbl2 25444 | . 2 ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) ≤ (vol*‘𝑥)))) | |
| 23 | 1, 21, 22 | sylanbrc 583 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → 𝐴 ∈ dom vol) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3902 ∩ cin 3904 ⊆ wss 3905 𝒫 cpw 4553 class class class wbr 5095 dom cdm 5623 ‘cfv 6486 (class class class)co 7353 ℝcr 11027 0cc0 11028 + caddc 11031 ≤ cle 11169 vol*covol 25379 volcvol 25380 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-q 12868 df-rp 12912 df-ioo 13270 df-ico 13272 df-icc 13273 df-fz 13429 df-fl 13714 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-ovol 25381 df-vol 25382 |
| This theorem is referenced by: 0mbl 25456 icombl1 25480 ioombl 25482 ovolioo 25485 uniiccmbl 25507 volivth 25524 mbfeqalem1 25558 itg10a 25627 itg2uba 25660 itgss3 25732 cntnevol 34194 voliunnfl 37643 volsupnfl 37644 cnambfre 37647 snmbl 45945 |
| Copyright terms: Public domain | W3C validator |