MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcmul Structured version   Visualization version   GIF version

Theorem pcmul 16829
Description: Multiplication property of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
pcmul ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)))

Proof of Theorem pcmul
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < )
2 eqid 2730 . . 3 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < )
3 eqid 2730 . . 3 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝐴 · 𝐵)}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝐴 · 𝐵)}, ℝ, < )
41, 2, 3pcpremul 16821 . 2 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) + sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < )) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝐴 · 𝐵)}, ℝ, < ))
51pczpre 16825 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ))
653adant3 1132 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐴) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ))
72pczpre 16825 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < ))
873adant2 1131 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < ))
96, 8oveq12d 7408 . 2 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) + sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < )))
10 zmulcl 12589 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) ∈ ℤ)
1110ad2ant2r 747 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ∈ ℤ)
12 zcn 12541 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
1312anim1i 615 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
14 zcn 12541 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
1514anim1i 615 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
16 mulne0 11827 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ≠ 0)
1713, 15, 16syl2an 596 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ≠ 0)
1811, 17jca 511 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) ∈ ℤ ∧ (𝐴 · 𝐵) ≠ 0))
193pczpre 16825 . . . 4 ((𝑃 ∈ ℙ ∧ ((𝐴 · 𝐵) ∈ ℤ ∧ (𝐴 · 𝐵) ≠ 0)) → (𝑃 pCnt (𝐴 · 𝐵)) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝐴 · 𝐵)}, ℝ, < ))
2018, 19sylan2 593 . . 3 ((𝑃 ∈ ℙ ∧ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0))) → (𝑃 pCnt (𝐴 · 𝐵)) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝐴 · 𝐵)}, ℝ, < ))
21203impb 1114 . 2 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 · 𝐵)) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝐴 · 𝐵)}, ℝ, < ))
224, 9, 213eqtr4rd 2776 1 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  {crab 3408   class class class wbr 5110  (class class class)co 7390  supcsup 9398  cc 11073  cr 11074  0cc0 11075   + caddc 11078   · cmul 11080   < clt 11215  0cn0 12449  cz 12536  cexp 14033  cdvds 16229  cprime 16648   pCnt cpc 16814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472  df-prm 16649  df-pc 16815
This theorem is referenced by:  pcqmul  16831  pcaddlem  16866  pcmpt  16870  pcfac  16877  pcbc  16878  sylow1lem1  19535  sylow1lem5  19539  mumullem2  27097  chtublem  27129  lgsdi  27252  aks6d1c2p2  42114
  Copyright terms: Public domain W3C validator