Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pcmul | Structured version Visualization version GIF version |
Description: Multiplication property of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
pcmul | ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐴}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐴}, ℝ, < ) | |
2 | eqid 2736 | . . 3 ⊢ sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐵}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐵}, ℝ, < ) | |
3 | eqid 2736 | . . 3 ⊢ sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝐴 · 𝐵)}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝐴 · 𝐵)}, ℝ, < ) | |
4 | 1, 2, 3 | pcpremul 16589 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐴}, ℝ, < ) + sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐵}, ℝ, < )) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝐴 · 𝐵)}, ℝ, < )) |
5 | 1 | pczpre 16593 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐴}, ℝ, < )) |
6 | 5 | 3adant3 1132 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐴) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐴}, ℝ, < )) |
7 | 2 | pczpre 16593 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐵}, ℝ, < )) |
8 | 7 | 3adant2 1131 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐵}, ℝ, < )) |
9 | 6, 8 | oveq12d 7325 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐴}, ℝ, < ) + sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐵}, ℝ, < ))) |
10 | zmulcl 12415 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) ∈ ℤ) | |
11 | 10 | ad2ant2r 745 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ∈ ℤ) |
12 | zcn 12370 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
13 | 12 | anim1i 616 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
14 | zcn 12370 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℂ) | |
15 | 14 | anim1i 616 | . . . . . 6 ⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) |
16 | mulne0 11663 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ≠ 0) | |
17 | 13, 15, 16 | syl2an 597 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ≠ 0) |
18 | 11, 17 | jca 513 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) ∈ ℤ ∧ (𝐴 · 𝐵) ≠ 0)) |
19 | 3 | pczpre 16593 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ ((𝐴 · 𝐵) ∈ ℤ ∧ (𝐴 · 𝐵) ≠ 0)) → (𝑃 pCnt (𝐴 · 𝐵)) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝐴 · 𝐵)}, ℝ, < )) |
20 | 18, 19 | sylan2 594 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0))) → (𝑃 pCnt (𝐴 · 𝐵)) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝐴 · 𝐵)}, ℝ, < )) |
21 | 20 | 3impb 1115 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 · 𝐵)) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝐴 · 𝐵)}, ℝ, < )) |
22 | 4, 9, 21 | 3eqtr4rd 2787 | 1 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 {crab 3284 class class class wbr 5081 (class class class)co 7307 supcsup 9243 ℂcc 10915 ℝcr 10916 0cc0 10917 + caddc 10920 · cmul 10922 < clt 11055 ℕ0cn0 12279 ℤcz 12365 ↑cexp 13828 ∥ cdvds 16008 ℙcprime 16421 pCnt cpc 16582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-sup 9245 df-inf 9246 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-n0 12280 df-z 12366 df-uz 12629 df-q 12735 df-rp 12777 df-fl 13558 df-mod 13636 df-seq 13768 df-exp 13829 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-dvds 16009 df-gcd 16247 df-prm 16422 df-pc 16583 |
This theorem is referenced by: pcqmul 16599 pcaddlem 16634 pcmpt 16638 pcfac 16645 pcbc 16646 sylow1lem1 19248 sylow1lem5 19252 mumullem2 26374 chtublem 26404 lgsdi 26527 |
Copyright terms: Public domain | W3C validator |