![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pcmul | Structured version Visualization version GIF version |
Description: Multiplication property of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
pcmul | ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2772 | . . 3 ⊢ sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐴}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐴}, ℝ, < ) | |
2 | eqid 2772 | . . 3 ⊢ sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐵}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐵}, ℝ, < ) | |
3 | eqid 2772 | . . 3 ⊢ sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝐴 · 𝐵)}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝐴 · 𝐵)}, ℝ, < ) | |
4 | 1, 2, 3 | pcpremul 16026 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐴}, ℝ, < ) + sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐵}, ℝ, < )) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝐴 · 𝐵)}, ℝ, < )) |
5 | 1 | pczpre 16030 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐴}, ℝ, < )) |
6 | 5 | 3adant3 1112 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐴) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐴}, ℝ, < )) |
7 | 2 | pczpre 16030 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐵}, ℝ, < )) |
8 | 7 | 3adant2 1111 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐵}, ℝ, < )) |
9 | 6, 8 | oveq12d 6988 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐴}, ℝ, < ) + sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐵}, ℝ, < ))) |
10 | zmulcl 11837 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) ∈ ℤ) | |
11 | 10 | ad2ant2r 734 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ∈ ℤ) |
12 | zcn 11791 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
13 | 12 | anim1i 605 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
14 | zcn 11791 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℂ) | |
15 | 14 | anim1i 605 | . . . . . 6 ⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) |
16 | mulne0 11075 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ≠ 0) | |
17 | 13, 15, 16 | syl2an 586 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ≠ 0) |
18 | 11, 17 | jca 504 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) ∈ ℤ ∧ (𝐴 · 𝐵) ≠ 0)) |
19 | 3 | pczpre 16030 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ ((𝐴 · 𝐵) ∈ ℤ ∧ (𝐴 · 𝐵) ≠ 0)) → (𝑃 pCnt (𝐴 · 𝐵)) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝐴 · 𝐵)}, ℝ, < )) |
20 | 18, 19 | sylan2 583 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0))) → (𝑃 pCnt (𝐴 · 𝐵)) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝐴 · 𝐵)}, ℝ, < )) |
21 | 20 | 3impb 1095 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 · 𝐵)) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝐴 · 𝐵)}, ℝ, < )) |
22 | 4, 9, 21 | 3eqtr4rd 2819 | 1 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2048 ≠ wne 2961 {crab 3086 class class class wbr 4923 (class class class)co 6970 supcsup 8691 ℂcc 10325 ℝcr 10326 0cc0 10327 + caddc 10330 · cmul 10332 < clt 10466 ℕ0cn0 11700 ℤcz 11786 ↑cexp 13237 ∥ cdvds 15457 ℙcprime 15861 pCnt cpc 16019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 ax-pre-sup 10405 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-1o 7897 df-2o 7898 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-fin 8302 df-sup 8693 df-inf 8694 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-div 11091 df-nn 11432 df-2 11496 df-3 11497 df-n0 11701 df-z 11787 df-uz 12052 df-q 12156 df-rp 12198 df-fl 12970 df-mod 13046 df-seq 13178 df-exp 13238 df-cj 14309 df-re 14310 df-im 14311 df-sqrt 14445 df-abs 14446 df-dvds 15458 df-gcd 15694 df-prm 15862 df-pc 16020 |
This theorem is referenced by: pcqmul 16036 pcaddlem 16070 pcmpt 16074 pcfac 16081 pcbc 16082 sylow1lem1 18474 sylow1lem5 18478 mumullem2 25449 chtublem 25479 lgsdi 25602 |
Copyright terms: Public domain | W3C validator |