MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pccld Structured version   Visualization version   GIF version

Theorem pccld 16789
Description: Closure of the prime power function. (Contributed by Mario Carneiro, 29-May-2016.)
Hypotheses
Ref Expression
pccld.1 (𝜑𝑃 ∈ ℙ)
pccld.2 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
pccld (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ0)

Proof of Theorem pccld
StepHypRef Expression
1 pccld.1 . 2 (𝜑𝑃 ∈ ℙ)
2 pccld.2 . 2 (𝜑𝑁 ∈ ℕ)
3 pccl 16788 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃 pCnt 𝑁) ∈ ℕ0)
41, 2, 3syl2anc 582 1 (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2104  (class class class)co 7413  cn 12218  0cn0 12478  cprime 16614   pCnt cpc 16775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191  ax-pre-sup 11192
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-2o 8471  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-sup 9441  df-inf 9442  df-pnf 11256  df-mnf 11257  df-xr 11258  df-ltxr 11259  df-le 11260  df-sub 11452  df-neg 11453  df-div 11878  df-nn 12219  df-2 12281  df-3 12282  df-n0 12479  df-z 12565  df-uz 12829  df-q 12939  df-rp 12981  df-fl 13763  df-mod 13841  df-seq 13973  df-exp 14034  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-dvds 16204  df-gcd 16442  df-prm 16615  df-pc 16776
This theorem is referenced by:  pcqmul  16792  pcidlem  16811  pcgcd1  16816  pc2dvds  16818  pcz  16820  pcprmpw2  16821  dvdsprmpweq  16823  pcadd  16828  pcmpt  16831  pcfac  16838  oddprmdvds  16842  pockthg  16845  prmreclem2  16856  sylow1lem1  19509  sylow1lem3  19511  sylow1lem5  19513  pgpfi  19516  slwhash  19535  fislw  19536  gexexlem  19763  ablfac1lem  19981  ablfac1b  19983  ablfac1c  19984  ablfac1eu  19986  pgpfac1lem2  19988  pgpfac1lem3a  19989  ablfaclem3  20000  mumullem2  26918  chtublem  26948  pclogsum  26952  bposlem1  27021  bposlem3  27023  chebbnd1lem1  27206  dchrisum0flblem1  27245  dchrisum0flblem2  27246  aks4d1p6  41254  aks4d1p7d1  41255  aks4d1p8d2  41258  aks4d1p8d3  41259  aks4d1p8  41260  aks6d1c2p2  41265
  Copyright terms: Public domain W3C validator