MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumhash Structured version   Visualization version   GIF version

Theorem sumhash 16231
Description: The sum of 1 over a set is the size of the set. (Contributed by Mario Carneiro, 8-Mar-2014.) (Revised by Mario Carneiro, 20-May-2014.)
Assertion
Ref Expression
sumhash ((𝐵 ∈ Fin ∧ 𝐴𝐵) → Σ𝑘𝐵 if(𝑘𝐴, 1, 0) = (♯‘𝐴))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘

Proof of Theorem sumhash
StepHypRef Expression
1 ssfi 8737 . . 3 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
2 ax-1cn 10594 . . 3 1 ∈ ℂ
3 fsumconst 15144 . . 3 ((𝐴 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑘𝐴 1 = ((♯‘𝐴) · 1))
41, 2, 3sylancl 588 . 2 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → Σ𝑘𝐴 1 = ((♯‘𝐴) · 1))
5 simpr 487 . . 3 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴𝐵)
62rgenw 3150 . . . 4 𝑘𝐴 1 ∈ ℂ
76a1i 11 . . 3 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → ∀𝑘𝐴 1 ∈ ℂ)
8 animorlr 976 . . 3 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → (𝐵 ⊆ (ℤ𝐶) ∨ 𝐵 ∈ Fin))
9 sumss2 15082 . . 3 (((𝐴𝐵 ∧ ∀𝑘𝐴 1 ∈ ℂ) ∧ (𝐵 ⊆ (ℤ𝐶) ∨ 𝐵 ∈ Fin)) → Σ𝑘𝐴 1 = Σ𝑘𝐵 if(𝑘𝐴, 1, 0))
105, 7, 8, 9syl21anc 835 . 2 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → Σ𝑘𝐴 1 = Σ𝑘𝐵 if(𝑘𝐴, 1, 0))
11 hashcl 13716 . . . . 5 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
121, 11syl 17 . . . 4 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → (♯‘𝐴) ∈ ℕ0)
1312nn0cnd 11956 . . 3 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → (♯‘𝐴) ∈ ℂ)
1413mulid1d 10657 . 2 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → ((♯‘𝐴) · 1) = (♯‘𝐴))
154, 10, 143eqtr3d 2864 1 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → Σ𝑘𝐵 if(𝑘𝐴, 1, 0) = (♯‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1533  wcel 2110  wral 3138  wss 3935  ifcif 4466  cfv 6354  (class class class)co 7155  Fincfn 8508  cc 10534  0cc0 10536  1c1 10537   · cmul 10541  0cn0 11896  cuz 12242  chash 13689  Σcsu 15041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-fz 12892  df-fzo 13033  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-sum 15042
This theorem is referenced by:  pcfac  16234  ramcl  16364  bposlem1  25859
  Copyright terms: Public domain W3C validator