![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sumhash | Structured version Visualization version GIF version |
Description: The sum of 1 over a set is the size of the set. (Contributed by Mario Carneiro, 8-Mar-2014.) (Revised by Mario Carneiro, 20-May-2014.) |
Ref | Expression |
---|---|
sumhash | ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵) → Σ𝑘 ∈ 𝐵 if(𝑘 ∈ 𝐴, 1, 0) = (♯‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssfi 9204 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ Fin) | |
2 | ax-1cn 11207 | . . 3 ⊢ 1 ∈ ℂ | |
3 | fsumconst 15789 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑘 ∈ 𝐴 1 = ((♯‘𝐴) · 1)) | |
4 | 1, 2, 3 | sylancl 584 | . 2 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵) → Σ𝑘 ∈ 𝐴 1 = ((♯‘𝐴) · 1)) |
5 | simpr 483 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ 𝐵) | |
6 | 2 | rgenw 3055 | . . . 4 ⊢ ∀𝑘 ∈ 𝐴 1 ∈ ℂ |
7 | 6 | a1i 11 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵) → ∀𝑘 ∈ 𝐴 1 ∈ ℂ) |
8 | animorlr 977 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵) → (𝐵 ⊆ (ℤ≥‘𝐶) ∨ 𝐵 ∈ Fin)) | |
9 | sumss2 15725 | . . 3 ⊢ (((𝐴 ⊆ 𝐵 ∧ ∀𝑘 ∈ 𝐴 1 ∈ ℂ) ∧ (𝐵 ⊆ (ℤ≥‘𝐶) ∨ 𝐵 ∈ Fin)) → Σ𝑘 ∈ 𝐴 1 = Σ𝑘 ∈ 𝐵 if(𝑘 ∈ 𝐴, 1, 0)) | |
10 | 5, 7, 8, 9 | syl21anc 836 | . 2 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵) → Σ𝑘 ∈ 𝐴 1 = Σ𝑘 ∈ 𝐵 if(𝑘 ∈ 𝐴, 1, 0)) |
11 | hashcl 14368 | . . . . 5 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
12 | 1, 11 | syl 17 | . . . 4 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵) → (♯‘𝐴) ∈ ℕ0) |
13 | 12 | nn0cnd 12580 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵) → (♯‘𝐴) ∈ ℂ) |
14 | 13 | mulridd 11272 | . 2 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵) → ((♯‘𝐴) · 1) = (♯‘𝐴)) |
15 | 4, 10, 14 | 3eqtr3d 2774 | 1 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵) → Σ𝑘 ∈ 𝐵 if(𝑘 ∈ 𝐴, 1, 0) = (♯‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ wo 845 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ⊆ wss 3946 ifcif 4523 ‘cfv 6546 (class class class)co 7416 Fincfn 8966 ℂcc 11147 0cc0 11149 1c1 11150 · cmul 11154 ℕ0cn0 12518 ℤ≥cuz 12868 ♯chash 14342 Σcsu 15685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-inf2 9677 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 ax-pre-sup 11227 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-isom 6555 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-sup 9478 df-oi 9546 df-card 9975 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-div 11913 df-nn 12259 df-2 12321 df-3 12322 df-n0 12519 df-z 12605 df-uz 12869 df-rp 13023 df-fz 13533 df-fzo 13676 df-seq 14016 df-exp 14076 df-hash 14343 df-cj 15099 df-re 15100 df-im 15101 df-sqrt 15235 df-abs 15236 df-clim 15485 df-sum 15686 |
This theorem is referenced by: pcfac 16896 ramcl 17026 bposlem1 27310 |
Copyright terms: Public domain | W3C validator |