Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sumhash | Structured version Visualization version GIF version |
Description: The sum of 1 over a set is the size of the set. (Contributed by Mario Carneiro, 8-Mar-2014.) (Revised by Mario Carneiro, 20-May-2014.) |
Ref | Expression |
---|---|
sumhash | ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵) → Σ𝑘 ∈ 𝐵 if(𝑘 ∈ 𝐴, 1, 0) = (♯‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssfi 8918 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ Fin) | |
2 | ax-1cn 10860 | . . 3 ⊢ 1 ∈ ℂ | |
3 | fsumconst 15430 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑘 ∈ 𝐴 1 = ((♯‘𝐴) · 1)) | |
4 | 1, 2, 3 | sylancl 585 | . 2 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵) → Σ𝑘 ∈ 𝐴 1 = ((♯‘𝐴) · 1)) |
5 | simpr 484 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ 𝐵) | |
6 | 2 | rgenw 3075 | . . . 4 ⊢ ∀𝑘 ∈ 𝐴 1 ∈ ℂ |
7 | 6 | a1i 11 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵) → ∀𝑘 ∈ 𝐴 1 ∈ ℂ) |
8 | animorlr 976 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵) → (𝐵 ⊆ (ℤ≥‘𝐶) ∨ 𝐵 ∈ Fin)) | |
9 | sumss2 15366 | . . 3 ⊢ (((𝐴 ⊆ 𝐵 ∧ ∀𝑘 ∈ 𝐴 1 ∈ ℂ) ∧ (𝐵 ⊆ (ℤ≥‘𝐶) ∨ 𝐵 ∈ Fin)) → Σ𝑘 ∈ 𝐴 1 = Σ𝑘 ∈ 𝐵 if(𝑘 ∈ 𝐴, 1, 0)) | |
10 | 5, 7, 8, 9 | syl21anc 834 | . 2 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵) → Σ𝑘 ∈ 𝐴 1 = Σ𝑘 ∈ 𝐵 if(𝑘 ∈ 𝐴, 1, 0)) |
11 | hashcl 13999 | . . . . 5 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
12 | 1, 11 | syl 17 | . . . 4 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵) → (♯‘𝐴) ∈ ℕ0) |
13 | 12 | nn0cnd 12225 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵) → (♯‘𝐴) ∈ ℂ) |
14 | 13 | mulid1d 10923 | . 2 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵) → ((♯‘𝐴) · 1) = (♯‘𝐴)) |
15 | 4, 10, 14 | 3eqtr3d 2786 | 1 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵) → Σ𝑘 ∈ 𝐵 if(𝑘 ∈ 𝐴, 1, 0) = (♯‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 ifcif 4456 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 ℂcc 10800 0cc0 10802 1c1 10803 · cmul 10807 ℕ0cn0 12163 ℤ≥cuz 12511 ♯chash 13972 Σcsu 15325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 |
This theorem is referenced by: pcfac 16528 ramcl 16658 bposlem1 26337 |
Copyright terms: Public domain | W3C validator |