MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylfvallem Structured version   Visualization version   GIF version

Theorem taylfvallem 25528
Description: Lemma for taylfval 25529. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
taylfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylfval.f (𝜑𝐹:𝐴⟶ℂ)
taylfval.a (𝜑𝐴𝑆)
taylfval.n (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
taylfval.b ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
Assertion
Ref Expression
taylfvallem ((𝜑𝑋 ∈ ℂ) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘)))) ⊆ ℂ)
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑁   𝑆,𝑘   𝑘,𝑋
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem taylfvallem
StepHypRef Expression
1 cnfldbas 20612 . 2 ℂ = (Base‘ℂfld)
2 cnring 20631 . . 3 fld ∈ Ring
3 ringcmn 19831 . . 3 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
42, 3mp1i 13 . 2 ((𝜑𝑋 ∈ ℂ) → ℂfld ∈ CMnd)
5 cnfldtps 23952 . . 3 fld ∈ TopSp
65a1i 11 . 2 ((𝜑𝑋 ∈ ℂ) → ℂfld ∈ TopSp)
7 ovex 7305 . . . 4 (0[,]𝑁) ∈ V
87inex1 5245 . . 3 ((0[,]𝑁) ∩ ℤ) ∈ V
98a1i 11 . 2 ((𝜑𝑋 ∈ ℂ) → ((0[,]𝑁) ∩ ℤ) ∈ V)
10 taylfval.s . . . 4 (𝜑𝑆 ∈ {ℝ, ℂ})
11 taylfval.f . . . 4 (𝜑𝐹:𝐴⟶ℂ)
12 taylfval.a . . . 4 (𝜑𝐴𝑆)
13 taylfval.n . . . 4 (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
14 taylfval.b . . . 4 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
1510, 11, 12, 13, 14taylfvallem1 25527 . . 3 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘)) ∈ ℂ)
1615fmpttd 6986 . 2 ((𝜑𝑋 ∈ ℂ) → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘))):((0[,]𝑁) ∩ ℤ)⟶ℂ)
171, 4, 6, 9, 16tsmscl 23297 1 ((𝜑𝑋 ∈ ℂ) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘)))) ⊆ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844   = wceq 1542  wcel 2110  Vcvv 3431  cin 3891  wss 3892  {cpr 4569  cmpt 5162  dom cdm 5590  wf 6428  cfv 6432  (class class class)co 7272  cc 10880  cr 10881  0cc0 10882   · cmul 10887  +∞cpnf 11017  cmin 11216   / cdiv 11643  0cn0 12244  cz 12330  [,]cicc 13093  cexp 13793  !cfa 13998  CMndccmn 19397  Ringcrg 19794  fldccnfld 20608  TopSpctps 22092   tsums ctsu 23288   D𝑛 cdvn 25039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-inf2 9387  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959  ax-pre-sup 10960  ax-addf 10961  ax-mulf 10962
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-om 7708  df-1st 7825  df-2nd 7826  df-supp 7970  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-1o 8289  df-er 8490  df-map 8609  df-pm 8610  df-en 8726  df-dom 8727  df-sdom 8728  df-fin 8729  df-fsupp 9117  df-fi 9158  df-sup 9189  df-inf 9190  df-oi 9257  df-card 9708  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-div 11644  df-nn 11985  df-2 12047  df-3 12048  df-4 12049  df-5 12050  df-6 12051  df-7 12052  df-8 12053  df-9 12054  df-n0 12245  df-z 12331  df-dec 12449  df-uz 12594  df-q 12700  df-rp 12742  df-xneg 12859  df-xadd 12860  df-xmul 12861  df-icc 13097  df-fz 13251  df-fzo 13394  df-seq 13733  df-exp 13794  df-fac 13999  df-hash 14056  df-cj 14821  df-re 14822  df-im 14823  df-sqrt 14957  df-abs 14958  df-struct 16859  df-sets 16876  df-slot 16894  df-ndx 16906  df-base 16924  df-plusg 16986  df-mulr 16987  df-starv 16988  df-tset 16992  df-ple 16993  df-ds 16995  df-unif 16996  df-rest 17144  df-topn 17145  df-0g 17163  df-gsum 17164  df-topgen 17165  df-mgm 18337  df-sgrp 18386  df-mnd 18397  df-grp 18591  df-minusg 18592  df-cntz 18934  df-cmn 19399  df-abl 19400  df-mgp 19732  df-ur 19749  df-ring 19796  df-cring 19797  df-psmet 20600  df-xmet 20601  df-met 20602  df-bl 20603  df-mopn 20604  df-fbas 20605  df-fg 20606  df-cnfld 20609  df-top 22054  df-topon 22071  df-topsp 22093  df-bases 22107  df-cld 22181  df-ntr 22182  df-cls 22183  df-nei 22260  df-lp 22298  df-perf 22299  df-cnp 22390  df-haus 22477  df-fil 23008  df-fm 23100  df-flim 23101  df-flf 23102  df-tsms 23289  df-xms 23484  df-ms 23485  df-limc 25041  df-dv 25042  df-dvn 25043
This theorem is referenced by:  taylfval  25529  taylf  25531
  Copyright terms: Public domain W3C validator