![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > taylfvallem | Structured version Visualization version GIF version |
Description: Lemma for taylfval 26309. (Contributed by Mario Carneiro, 30-Dec-2016.) |
Ref | Expression |
---|---|
taylfval.s | β’ (π β π β {β, β}) |
taylfval.f | β’ (π β πΉ:π΄βΆβ) |
taylfval.a | β’ (π β π΄ β π) |
taylfval.n | β’ (π β (π β β0 β¨ π = +β)) |
taylfval.b | β’ ((π β§ π β ((0[,]π) β© β€)) β π΅ β dom ((π Dπ πΉ)βπ)) |
Ref | Expression |
---|---|
taylfvallem | β’ ((π β§ π β β) β (βfld tsums (π β ((0[,]π) β© β€) β¦ (((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· ((π β π΅)βπ)))) β β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfldbas 21285 | . 2 β’ β = (Baseββfld) | |
2 | cnring 21320 | . . 3 β’ βfld β Ring | |
3 | ringcmn 20220 | . . 3 β’ (βfld β Ring β βfld β CMnd) | |
4 | 2, 3 | mp1i 13 | . 2 β’ ((π β§ π β β) β βfld β CMnd) |
5 | cnfldtps 24710 | . . 3 β’ βfld β TopSp | |
6 | 5 | a1i 11 | . 2 β’ ((π β§ π β β) β βfld β TopSp) |
7 | ovex 7448 | . . . 4 β’ (0[,]π) β V | |
8 | 7 | inex1 5312 | . . 3 β’ ((0[,]π) β© β€) β V |
9 | 8 | a1i 11 | . 2 β’ ((π β§ π β β) β ((0[,]π) β© β€) β V) |
10 | taylfval.s | . . . 4 β’ (π β π β {β, β}) | |
11 | taylfval.f | . . . 4 β’ (π β πΉ:π΄βΆβ) | |
12 | taylfval.a | . . . 4 β’ (π β π΄ β π) | |
13 | taylfval.n | . . . 4 β’ (π β (π β β0 β¨ π = +β)) | |
14 | taylfval.b | . . . 4 β’ ((π β§ π β ((0[,]π) β© β€)) β π΅ β dom ((π Dπ πΉ)βπ)) | |
15 | 10, 11, 12, 13, 14 | taylfvallem1 26307 | . . 3 β’ (((π β§ π β β) β§ π β ((0[,]π) β© β€)) β (((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· ((π β π΅)βπ)) β β) |
16 | 15 | fmpttd 7119 | . 2 β’ ((π β§ π β β) β (π β ((0[,]π) β© β€) β¦ (((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· ((π β π΅)βπ))):((0[,]π) β© β€)βΆβ) |
17 | 1, 4, 6, 9, 16 | tsmscl 24055 | 1 β’ ((π β§ π β β) β (βfld tsums (π β ((0[,]π) β© β€) β¦ (((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· ((π β π΅)βπ)))) β β) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β¨ wo 845 = wceq 1533 β wcel 2098 Vcvv 3463 β© cin 3939 β wss 3940 {cpr 4626 β¦ cmpt 5226 dom cdm 5672 βΆwf 6538 βcfv 6542 (class class class)co 7415 βcc 11134 βcr 11135 0cc0 11136 Β· cmul 11141 +βcpnf 11273 β cmin 11472 / cdiv 11899 β0cn0 12500 β€cz 12586 [,]cicc 13357 βcexp 14056 !cfa 14262 CMndccmn 19737 Ringcrg 20175 βfldccnfld 21281 TopSpctps 22850 tsums ctsu 24046 Dπ cdvn 25809 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-inf2 9662 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 ax-addf 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7989 df-2nd 7990 df-supp 8162 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-map 8843 df-pm 8844 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-fsupp 9384 df-fi 9432 df-sup 9463 df-inf 9464 df-oi 9531 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-div 11900 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-z 12587 df-dec 12706 df-uz 12851 df-q 12961 df-rp 13005 df-xneg 13122 df-xadd 13123 df-xmul 13124 df-icc 13361 df-fz 13515 df-fzo 13658 df-seq 13997 df-exp 14057 df-fac 14263 df-hash 14320 df-cj 15076 df-re 15077 df-im 15078 df-sqrt 15212 df-abs 15213 df-struct 17113 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-plusg 17243 df-mulr 17244 df-starv 17245 df-tset 17249 df-ple 17250 df-ds 17252 df-unif 17253 df-rest 17401 df-topn 17402 df-0g 17420 df-gsum 17421 df-topgen 17422 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-grp 18895 df-minusg 18896 df-cntz 19270 df-cmn 19739 df-abl 19740 df-mgp 20077 df-ur 20124 df-ring 20177 df-cring 20178 df-psmet 21273 df-xmet 21274 df-met 21275 df-bl 21276 df-mopn 21277 df-fbas 21278 df-fg 21279 df-cnfld 21282 df-top 22812 df-topon 22829 df-topsp 22851 df-bases 22865 df-cld 22939 df-ntr 22940 df-cls 22941 df-nei 23018 df-lp 23056 df-perf 23057 df-cnp 23148 df-haus 23235 df-fil 23766 df-fm 23858 df-flim 23859 df-flf 23860 df-tsms 24047 df-xms 24242 df-ms 24243 df-limc 25811 df-dv 25812 df-dvn 25813 |
This theorem is referenced by: taylfval 26309 taylf 26311 |
Copyright terms: Public domain | W3C validator |