MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylfvallem Structured version   Visualization version   GIF version

Theorem taylfvallem 26282
Description: Lemma for taylfval 26283. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
taylfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylfval.f (𝜑𝐹:𝐴⟶ℂ)
taylfval.a (𝜑𝐴𝑆)
taylfval.n (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
taylfval.b ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
Assertion
Ref Expression
taylfvallem ((𝜑𝑋 ∈ ℂ) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘)))) ⊆ ℂ)
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑁   𝑆,𝑘   𝑘,𝑋
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem taylfvallem
StepHypRef Expression
1 cnfldbas 21284 . 2 ℂ = (Base‘ℂfld)
2 cnring 21316 . . 3 fld ∈ Ring
3 ringcmn 20186 . . 3 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
42, 3mp1i 13 . 2 ((𝜑𝑋 ∈ ℂ) → ℂfld ∈ CMnd)
5 cnfldtps 24682 . . 3 fld ∈ TopSp
65a1i 11 . 2 ((𝜑𝑋 ∈ ℂ) → ℂfld ∈ TopSp)
7 ovex 7386 . . . 4 (0[,]𝑁) ∈ V
87inex1 5259 . . 3 ((0[,]𝑁) ∩ ℤ) ∈ V
98a1i 11 . 2 ((𝜑𝑋 ∈ ℂ) → ((0[,]𝑁) ∩ ℤ) ∈ V)
10 taylfval.s . . . 4 (𝜑𝑆 ∈ {ℝ, ℂ})
11 taylfval.f . . . 4 (𝜑𝐹:𝐴⟶ℂ)
12 taylfval.a . . . 4 (𝜑𝐴𝑆)
13 taylfval.n . . . 4 (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
14 taylfval.b . . . 4 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
1510, 11, 12, 13, 14taylfvallem1 26281 . . 3 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘)) ∈ ℂ)
1615fmpttd 7053 . 2 ((𝜑𝑋 ∈ ℂ) → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘))):((0[,]𝑁) ∩ ℤ)⟶ℂ)
171, 4, 6, 9, 16tsmscl 24039 1 ((𝜑𝑋 ∈ ℂ) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘)))) ⊆ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3438  cin 3904  wss 3905  {cpr 4581  cmpt 5176  dom cdm 5623  wf 6482  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028   · cmul 11033  +∞cpnf 11165  cmin 11366   / cdiv 11796  0cn0 12403  cz 12490  [,]cicc 13270  cexp 13987  !cfa 14199  CMndccmn 19678  Ringcrg 20137  fldccnfld 21280  TopSpctps 22836   tsums ctsu 24030   D𝑛 cdvn 25782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-q 12869  df-rp 12913  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-icc 13274  df-fz 13430  df-fzo 13577  df-seq 13928  df-exp 13988  df-fac 14200  df-hash 14257  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-plusg 17193  df-mulr 17194  df-starv 17195  df-tset 17199  df-ple 17200  df-ds 17202  df-unif 17203  df-rest 17345  df-topn 17346  df-0g 17364  df-gsum 17365  df-topgen 17366  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-grp 18834  df-minusg 18835  df-cntz 19215  df-cmn 19680  df-abl 19681  df-mgp 20045  df-ur 20086  df-ring 20139  df-cring 20140  df-psmet 21272  df-xmet 21273  df-met 21274  df-bl 21275  df-mopn 21276  df-fbas 21277  df-fg 21278  df-cnfld 21281  df-top 22798  df-topon 22815  df-topsp 22837  df-bases 22850  df-cld 22923  df-ntr 22924  df-cls 22925  df-nei 23002  df-lp 23040  df-perf 23041  df-cnp 23132  df-haus 23219  df-fil 23750  df-fm 23842  df-flim 23843  df-flf 23844  df-tsms 24031  df-xms 24225  df-ms 24226  df-limc 25784  df-dv 25785  df-dvn 25786
This theorem is referenced by:  taylfval  26283  taylf  26285
  Copyright terms: Public domain W3C validator