Step | Hyp | Ref
| Expression |
1 | | 3anass 1096 |
. . 3
⊢ ((𝐹 ∈ (ℂ
↑pm ℂ) ∧ 𝑃 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℂ ∧ ((𝐹‘𝑘)(abs ∘ − )𝑃) < 𝑥)) ↔ (𝐹 ∈ (ℂ ↑pm
ℂ) ∧ (𝑃 ∈
ℂ ∧ ∀𝑥
∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℂ ∧ ((𝐹‘𝑘)(abs ∘ − )𝑃) < 𝑥)))) |
2 | | lmclim.3 |
. . . . . . . . . . 11
⊢ 𝑍 =
(ℤ≥‘𝑀) |
3 | 2 | uztrn2 12336 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
4 | | 3anass 1096 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℂ ∧ ((𝐹‘𝑘)(abs ∘ − )𝑃) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ ((𝐹‘𝑘)(abs ∘ − )𝑃) < 𝑥))) |
5 | | simplr 769 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) ∧ 𝑃 ∈ ℂ) → 𝑍 ⊆ dom 𝐹) |
6 | 5 | sselda 3875 |
. . . . . . . . . . . . 13
⊢ ((((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) ∧ 𝑃 ∈ ℂ) ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ dom 𝐹) |
7 | 6 | biantrurd 536 |
. . . . . . . . . . . 12
⊢ ((((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) ∧ 𝑃 ∈ ℂ) ∧ 𝑘 ∈ 𝑍) → (((𝐹‘𝑘) ∈ ℂ ∧ ((𝐹‘𝑘)(abs ∘ − )𝑃) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ ((𝐹‘𝑘)(abs ∘ − )𝑃) < 𝑥)))) |
8 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (abs
∘ − ) = (abs ∘ − ) |
9 | 8 | cnmetdval 23516 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑘) ∈ ℂ ∧ 𝑃 ∈ ℂ) → ((𝐹‘𝑘)(abs ∘ − )𝑃) = (abs‘((𝐹‘𝑘) − 𝑃))) |
10 | 9 | ancoms 462 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ ℂ ∧ (𝐹‘𝑘) ∈ ℂ) → ((𝐹‘𝑘)(abs ∘ − )𝑃) = (abs‘((𝐹‘𝑘) − 𝑃))) |
11 | 10 | breq1d 5037 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ ℂ ∧ (𝐹‘𝑘) ∈ ℂ) → (((𝐹‘𝑘)(abs ∘ − )𝑃) < 𝑥 ↔ (abs‘((𝐹‘𝑘) − 𝑃)) < 𝑥)) |
12 | 11 | pm5.32da 582 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ ℂ → (((𝐹‘𝑘) ∈ ℂ ∧ ((𝐹‘𝑘)(abs ∘ − )𝑃) < 𝑥) ↔ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑃)) < 𝑥))) |
13 | 12 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ ((((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) ∧ 𝑃 ∈ ℂ) ∧ 𝑘 ∈ 𝑍) → (((𝐹‘𝑘) ∈ ℂ ∧ ((𝐹‘𝑘)(abs ∘ − )𝑃) < 𝑥) ↔ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑃)) < 𝑥))) |
14 | 7, 13 | bitr3d 284 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) ∧ 𝑃 ∈ ℂ) ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ dom 𝐹 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ ((𝐹‘𝑘)(abs ∘ − )𝑃) < 𝑥)) ↔ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑃)) < 𝑥))) |
15 | 4, 14 | syl5bb 286 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) ∧ 𝑃 ∈ ℂ) ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℂ ∧ ((𝐹‘𝑘)(abs ∘ − )𝑃) < 𝑥) ↔ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑃)) < 𝑥))) |
16 | 3, 15 | sylan2 596 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) ∧ 𝑃 ∈ ℂ) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℂ ∧ ((𝐹‘𝑘)(abs ∘ − )𝑃) < 𝑥) ↔ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑃)) < 𝑥))) |
17 | 16 | anassrs 471 |
. . . . . . . 8
⊢
(((((𝑀 ∈
ℤ ∧ 𝑍 ⊆ dom
𝐹) ∧ 𝑃 ∈ ℂ) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℂ ∧ ((𝐹‘𝑘)(abs ∘ − )𝑃) < 𝑥) ↔ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑃)) < 𝑥))) |
18 | 17 | ralbidva 3108 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) ∧ 𝑃 ∈ ℂ) ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℂ ∧ ((𝐹‘𝑘)(abs ∘ − )𝑃) < 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑃)) < 𝑥))) |
19 | 18 | rexbidva 3205 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) ∧ 𝑃 ∈ ℂ) → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℂ ∧ ((𝐹‘𝑘)(abs ∘ − )𝑃) < 𝑥) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑃)) < 𝑥))) |
20 | 19 | ralbidv 3109 |
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) ∧ 𝑃 ∈ ℂ) → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℂ ∧ ((𝐹‘𝑘)(abs ∘ − )𝑃) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑃)) < 𝑥))) |
21 | 20 | pm5.32da 582 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) → ((𝑃 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℂ ∧ ((𝐹‘𝑘)(abs ∘ − )𝑃) < 𝑥)) ↔ (𝑃 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑃)) < 𝑥)))) |
22 | 21 | anbi2d 632 |
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) → ((𝐹 ∈ (ℂ ↑pm
ℂ) ∧ (𝑃 ∈
ℂ ∧ ∀𝑥
∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℂ ∧ ((𝐹‘𝑘)(abs ∘ − )𝑃) < 𝑥))) ↔ (𝐹 ∈ (ℂ ↑pm
ℂ) ∧ (𝑃 ∈
ℂ ∧ ∀𝑥
∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑃)) < 𝑥))))) |
23 | 1, 22 | syl5bb 286 |
. 2
⊢ ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) → ((𝐹 ∈ (ℂ ↑pm
ℂ) ∧ 𝑃 ∈
ℂ ∧ ∀𝑥
∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℂ ∧ ((𝐹‘𝑘)(abs ∘ − )𝑃) < 𝑥)) ↔ (𝐹 ∈ (ℂ ↑pm
ℂ) ∧ (𝑃 ∈
ℂ ∧ ∀𝑥
∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑃)) < 𝑥))))) |
24 | | lmclim.2 |
. . . 4
⊢ 𝐽 =
(TopOpen‘ℂfld) |
25 | 24 | cnfldtopn 23527 |
. . 3
⊢ 𝐽 = (MetOpen‘(abs ∘
− )) |
26 | | cnxmet 23518 |
. . . 4
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) |
27 | 26 | a1i 11 |
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) → (abs ∘ − ) ∈
(∞Met‘ℂ)) |
28 | | simpl 486 |
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) → 𝑀 ∈ ℤ) |
29 | 25, 27, 2, 28 | lmmbr3 24005 |
. 2
⊢ ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (ℂ ↑pm
ℂ) ∧ 𝑃 ∈
ℂ ∧ ∀𝑥
∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℂ ∧ ((𝐹‘𝑘)(abs ∘ − )𝑃) < 𝑥)))) |
30 | | simpll 767 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) ∧ 𝐹 ∈ (ℂ ↑pm
ℂ)) → 𝑀 ∈
ℤ) |
31 | | simpr 488 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) ∧ 𝐹 ∈ (ℂ ↑pm
ℂ)) → 𝐹 ∈
(ℂ ↑pm ℂ)) |
32 | | eqidd 2739 |
. . . 4
⊢ ((((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) ∧ 𝐹 ∈ (ℂ ↑pm
ℂ)) ∧ 𝑘 ∈
𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
33 | 2, 30, 31, 32 | clim2 14944 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) ∧ 𝐹 ∈ (ℂ ↑pm
ℂ)) → (𝐹 ⇝
𝑃 ↔ (𝑃 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑃)) < 𝑥)))) |
34 | 33 | pm5.32da 582 |
. 2
⊢ ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) → ((𝐹 ∈ (ℂ ↑pm
ℂ) ∧ 𝐹 ⇝
𝑃) ↔ (𝐹 ∈ (ℂ
↑pm ℂ) ∧ (𝑃 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑃)) < 𝑥))))) |
35 | 23, 29, 34 | 3bitr4d 314 |
1
⊢ ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (ℂ ↑pm
ℂ) ∧ 𝐹 ⇝
𝑃))) |