MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmclim Structured version   Visualization version   GIF version

Theorem lmclim 24048
Description: Relate a limit on the metric space of complex numbers to our complex number limit notation. (Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmclim.2 𝐽 = (TopOpen‘ℂfld)
lmclim.3 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
lmclim ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝐹𝑃)))

Proof of Theorem lmclim
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3anass 1096 . . 3 ((𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝑃 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℂ ∧ ((𝐹𝑘)(abs ∘ − )𝑃) < 𝑥)) ↔ (𝐹 ∈ (ℂ ↑pm ℂ) ∧ (𝑃 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℂ ∧ ((𝐹𝑘)(abs ∘ − )𝑃) < 𝑥))))
2 lmclim.3 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
32uztrn2 12336 . . . . . . . . . 10 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
4 3anass 1096 . . . . . . . . . . 11 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℂ ∧ ((𝐹𝑘)(abs ∘ − )𝑃) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ ((𝐹𝑘) ∈ ℂ ∧ ((𝐹𝑘)(abs ∘ − )𝑃) < 𝑥)))
5 simplr 769 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) ∧ 𝑃 ∈ ℂ) → 𝑍 ⊆ dom 𝐹)
65sselda 3875 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) ∧ 𝑃 ∈ ℂ) ∧ 𝑘𝑍) → 𝑘 ∈ dom 𝐹)
76biantrurd 536 . . . . . . . . . . . 12 ((((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) ∧ 𝑃 ∈ ℂ) ∧ 𝑘𝑍) → (((𝐹𝑘) ∈ ℂ ∧ ((𝐹𝑘)(abs ∘ − )𝑃) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ ((𝐹𝑘) ∈ ℂ ∧ ((𝐹𝑘)(abs ∘ − )𝑃) < 𝑥))))
8 eqid 2738 . . . . . . . . . . . . . . . . 17 (abs ∘ − ) = (abs ∘ − )
98cnmetdval 23516 . . . . . . . . . . . . . . . 16 (((𝐹𝑘) ∈ ℂ ∧ 𝑃 ∈ ℂ) → ((𝐹𝑘)(abs ∘ − )𝑃) = (abs‘((𝐹𝑘) − 𝑃)))
109ancoms 462 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℂ ∧ (𝐹𝑘) ∈ ℂ) → ((𝐹𝑘)(abs ∘ − )𝑃) = (abs‘((𝐹𝑘) − 𝑃)))
1110breq1d 5037 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℂ ∧ (𝐹𝑘) ∈ ℂ) → (((𝐹𝑘)(abs ∘ − )𝑃) < 𝑥 ↔ (abs‘((𝐹𝑘) − 𝑃)) < 𝑥))
1211pm5.32da 582 . . . . . . . . . . . . 13 (𝑃 ∈ ℂ → (((𝐹𝑘) ∈ ℂ ∧ ((𝐹𝑘)(abs ∘ − )𝑃) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑃)) < 𝑥)))
1312ad2antlr 727 . . . . . . . . . . . 12 ((((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) ∧ 𝑃 ∈ ℂ) ∧ 𝑘𝑍) → (((𝐹𝑘) ∈ ℂ ∧ ((𝐹𝑘)(abs ∘ − )𝑃) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑃)) < 𝑥)))
147, 13bitr3d 284 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) ∧ 𝑃 ∈ ℂ) ∧ 𝑘𝑍) → ((𝑘 ∈ dom 𝐹 ∧ ((𝐹𝑘) ∈ ℂ ∧ ((𝐹𝑘)(abs ∘ − )𝑃) < 𝑥)) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑃)) < 𝑥)))
154, 14syl5bb 286 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) ∧ 𝑃 ∈ ℂ) ∧ 𝑘𝑍) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℂ ∧ ((𝐹𝑘)(abs ∘ − )𝑃) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑃)) < 𝑥)))
163, 15sylan2 596 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) ∧ 𝑃 ∈ ℂ) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℂ ∧ ((𝐹𝑘)(abs ∘ − )𝑃) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑃)) < 𝑥)))
1716anassrs 471 . . . . . . . 8 (((((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) ∧ 𝑃 ∈ ℂ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℂ ∧ ((𝐹𝑘)(abs ∘ − )𝑃) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑃)) < 𝑥)))
1817ralbidva 3108 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) ∧ 𝑃 ∈ ℂ) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℂ ∧ ((𝐹𝑘)(abs ∘ − )𝑃) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑃)) < 𝑥)))
1918rexbidva 3205 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) ∧ 𝑃 ∈ ℂ) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℂ ∧ ((𝐹𝑘)(abs ∘ − )𝑃) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑃)) < 𝑥)))
2019ralbidv 3109 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) ∧ 𝑃 ∈ ℂ) → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℂ ∧ ((𝐹𝑘)(abs ∘ − )𝑃) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑃)) < 𝑥)))
2120pm5.32da 582 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) → ((𝑃 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℂ ∧ ((𝐹𝑘)(abs ∘ − )𝑃) < 𝑥)) ↔ (𝑃 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑃)) < 𝑥))))
2221anbi2d 632 . . 3 ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) → ((𝐹 ∈ (ℂ ↑pm ℂ) ∧ (𝑃 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℂ ∧ ((𝐹𝑘)(abs ∘ − )𝑃) < 𝑥))) ↔ (𝐹 ∈ (ℂ ↑pm ℂ) ∧ (𝑃 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑃)) < 𝑥)))))
231, 22syl5bb 286 . 2 ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) → ((𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝑃 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℂ ∧ ((𝐹𝑘)(abs ∘ − )𝑃) < 𝑥)) ↔ (𝐹 ∈ (ℂ ↑pm ℂ) ∧ (𝑃 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑃)) < 𝑥)))))
24 lmclim.2 . . . 4 𝐽 = (TopOpen‘ℂfld)
2524cnfldtopn 23527 . . 3 𝐽 = (MetOpen‘(abs ∘ − ))
26 cnxmet 23518 . . . 4 (abs ∘ − ) ∈ (∞Met‘ℂ)
2726a1i 11 . . 3 ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) → (abs ∘ − ) ∈ (∞Met‘ℂ))
28 simpl 486 . . 3 ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) → 𝑀 ∈ ℤ)
2925, 27, 2, 28lmmbr3 24005 . 2 ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝑃 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℂ ∧ ((𝐹𝑘)(abs ∘ − )𝑃) < 𝑥))))
30 simpll 767 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → 𝑀 ∈ ℤ)
31 simpr 488 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → 𝐹 ∈ (ℂ ↑pm ℂ))
32 eqidd 2739 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
332, 30, 31, 32clim2 14944 . . 3 (((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (𝐹𝑃 ↔ (𝑃 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑃)) < 𝑥))))
3433pm5.32da 582 . 2 ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) → ((𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝐹𝑃) ↔ (𝐹 ∈ (ℂ ↑pm ℂ) ∧ (𝑃 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑃)) < 𝑥)))))
3523, 29, 343bitr4d 314 1 ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝐹𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2113  wral 3053  wrex 3054  wss 3841   class class class wbr 5027  dom cdm 5519  ccom 5523  cfv 6333  (class class class)co 7164  pm cpm 8431  cc 10606   < clt 10746  cmin 10941  cz 12055  cuz 12317  +crp 12465  abscabs 14676  cli 14924  TopOpenctopn 16791  ∞Metcxmet 20195  fldccnfld 20210  𝑡clm 21970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-pre-sup 10686
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-er 8313  df-map 8432  df-pm 8433  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-sup 8972  df-inf 8973  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-div 11369  df-nn 11710  df-2 11772  df-3 11773  df-4 11774  df-5 11775  df-6 11776  df-7 11777  df-8 11778  df-9 11779  df-n0 11970  df-z 12056  df-dec 12173  df-uz 12318  df-q 12424  df-rp 12466  df-xneg 12583  df-xadd 12584  df-xmul 12585  df-fz 12975  df-seq 13454  df-exp 13515  df-cj 14541  df-re 14542  df-im 14543  df-sqrt 14677  df-abs 14678  df-clim 14928  df-struct 16581  df-ndx 16582  df-slot 16583  df-base 16585  df-plusg 16674  df-mulr 16675  df-starv 16676  df-tset 16680  df-ple 16681  df-ds 16683  df-unif 16684  df-rest 16792  df-topn 16793  df-topgen 16813  df-psmet 20202  df-xmet 20203  df-met 20204  df-bl 20205  df-mopn 20206  df-cnfld 20211  df-top 21638  df-topon 21655  df-bases 21690  df-lm 21973
This theorem is referenced by:  lmclimf  24049
  Copyright terms: Public domain W3C validator