Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > diporthcom | Structured version Visualization version GIF version |
Description: Orthogonality (meaning inner product is 0) is commutative. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ipcl.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ipcl.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
Ref | Expression |
---|---|
diporthcom | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑃𝐵) = 0 ↔ (𝐵𝑃𝐴) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6819 | . . . 4 ⊢ ((𝐴𝑃𝐵) = 0 → (∗‘(𝐴𝑃𝐵)) = (∗‘0)) | |
2 | cj0 14960 | . . . 4 ⊢ (∗‘0) = 0 | |
3 | 1, 2 | eqtrdi 2792 | . . 3 ⊢ ((𝐴𝑃𝐵) = 0 → (∗‘(𝐴𝑃𝐵)) = 0) |
4 | ipcl.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
5 | ipcl.7 | . . . . 5 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
6 | 4, 5 | dipcj 29305 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∗‘(𝐴𝑃𝐵)) = (𝐵𝑃𝐴)) |
7 | 6 | eqeq1d 2738 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((∗‘(𝐴𝑃𝐵)) = 0 ↔ (𝐵𝑃𝐴) = 0)) |
8 | 3, 7 | syl5ib 243 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑃𝐵) = 0 → (𝐵𝑃𝐴) = 0)) |
9 | fveq2 6819 | . . . 4 ⊢ ((𝐵𝑃𝐴) = 0 → (∗‘(𝐵𝑃𝐴)) = (∗‘0)) | |
10 | 9, 2 | eqtrdi 2792 | . . 3 ⊢ ((𝐵𝑃𝐴) = 0 → (∗‘(𝐵𝑃𝐴)) = 0) |
11 | 4, 5 | dipcj 29305 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (∗‘(𝐵𝑃𝐴)) = (𝐴𝑃𝐵)) |
12 | 11 | 3com23 1125 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∗‘(𝐵𝑃𝐴)) = (𝐴𝑃𝐵)) |
13 | 12 | eqeq1d 2738 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((∗‘(𝐵𝑃𝐴)) = 0 ↔ (𝐴𝑃𝐵) = 0)) |
14 | 10, 13 | syl5ib 243 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐵𝑃𝐴) = 0 → (𝐴𝑃𝐵) = 0)) |
15 | 8, 14 | impbid 211 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑃𝐵) = 0 ↔ (𝐵𝑃𝐴) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ‘cfv 6473 (class class class)co 7329 0cc0 10964 ∗ccj 14898 NrmCVeccnv 29175 BaseSetcba 29177 ·𝑖OLDcdip 29291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-inf2 9490 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 ax-pre-sup 11042 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-se 5570 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-isom 6482 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-sup 9291 df-oi 9359 df-card 9788 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-div 11726 df-nn 12067 df-2 12129 df-3 12130 df-4 12131 df-n0 12327 df-z 12413 df-uz 12676 df-rp 12824 df-fz 13333 df-fzo 13476 df-seq 13815 df-exp 13876 df-hash 14138 df-cj 14901 df-re 14902 df-im 14903 df-sqrt 15037 df-abs 15038 df-clim 15288 df-sum 15489 df-grpo 29084 df-gid 29085 df-ginv 29086 df-ablo 29136 df-vc 29150 df-nv 29183 df-va 29186 df-ba 29187 df-sm 29188 df-0v 29189 df-nmcv 29191 df-dip 29292 |
This theorem is referenced by: pythi 29441 |
Copyright terms: Public domain | W3C validator |