Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrxlinec Structured version   Visualization version   GIF version

Theorem rrxlinec 46326
Description: The line passing through the two different points 𝑋 and 𝑌 in a generalized real Euclidean space of finite dimension, expressed by its coordinates. Remark: This proof is shorter and requires less distinct variables than the proof using rrxlinesc 46325. (Contributed by AV, 13-Feb-2023.)
Hypotheses
Ref Expression
rrxlinesc.e 𝐸 = (ℝ^‘𝐼)
rrxlinesc.p 𝑃 = (ℝ ↑m 𝐼)
rrxlinesc.l 𝐿 = (LineM𝐸)
Assertion
Ref Expression
rrxlinec ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖)))})
Distinct variable groups:   𝐸,𝑝,𝑡   𝑖,𝐼,𝑝,𝑡   𝑃,𝑖,𝑝,𝑡   𝑖,𝑋,𝑝,𝑡   𝑖,𝑌,𝑝,𝑡
Allowed substitution hints:   𝐸(𝑖)   𝐿(𝑡,𝑖,𝑝)

Proof of Theorem rrxlinec
StepHypRef Expression
1 rrxlinesc.e . . 3 𝐸 = (ℝ^‘𝐼)
2 rrxlinesc.p . . 3 𝑃 = (ℝ ↑m 𝐼)
3 rrxlinesc.l . . 3 𝐿 = (LineM𝐸)
4 eqid 2736 . . 3 ( ·𝑠𝐸) = ( ·𝑠𝐸)
5 eqid 2736 . . 3 (+g𝐸) = (+g𝐸)
61, 2, 3, 4, 5rrxline 46324 . 2 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠𝐸)𝑋)(+g𝐸)(𝑡( ·𝑠𝐸)𝑌))})
7 eqid 2736 . . . . 5 (Base‘𝐸) = (Base‘𝐸)
8 simplll 773 . . . . 5 ((((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝐼 ∈ Fin)
9 1red 11026 . . . . . 6 ((((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 1 ∈ ℝ)
10 simpr 486 . . . . . 6 ((((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
119, 10resubcld 11453 . . . . 5 ((((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) ∈ ℝ)
12 id 22 . . . . . . . . . . . 12 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
1312, 1, 7rrxbasefi 24623 . . . . . . . . . . 11 (𝐼 ∈ Fin → (Base‘𝐸) = (ℝ ↑m 𝐼))
142, 13eqtr4id 2795 . . . . . . . . . 10 (𝐼 ∈ Fin → 𝑃 = (Base‘𝐸))
1514eleq2d 2822 . . . . . . . . 9 (𝐼 ∈ Fin → (𝑋𝑃𝑋 ∈ (Base‘𝐸)))
1615biimpcd 249 . . . . . . . 8 (𝑋𝑃 → (𝐼 ∈ Fin → 𝑋 ∈ (Base‘𝐸)))
17163ad2ant1 1133 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐼 ∈ Fin → 𝑋 ∈ (Base‘𝐸)))
1817impcom 409 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → 𝑋 ∈ (Base‘𝐸))
1918ad2antrr 724 . . . . 5 ((((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝑋 ∈ (Base‘𝐸))
2014eleq2d 2822 . . . . . . . . 9 (𝐼 ∈ Fin → (𝑌𝑃𝑌 ∈ (Base‘𝐸)))
2120biimpcd 249 . . . . . . . 8 (𝑌𝑃 → (𝐼 ∈ Fin → 𝑌 ∈ (Base‘𝐸)))
22213ad2ant2 1134 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐼 ∈ Fin → 𝑌 ∈ (Base‘𝐸)))
2322impcom 409 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → 𝑌 ∈ (Base‘𝐸))
2423ad2antrr 724 . . . . 5 ((((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝑌 ∈ (Base‘𝐸))
2514adantr 482 . . . . . . . 8 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → 𝑃 = (Base‘𝐸))
2625eleq2d 2822 . . . . . . 7 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑝𝑃𝑝 ∈ (Base‘𝐸)))
2726biimpa 478 . . . . . 6 (((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → 𝑝 ∈ (Base‘𝐸))
2827adantr 482 . . . . 5 ((((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝑝 ∈ (Base‘𝐸))
291, 7, 4, 8, 11, 19, 24, 28, 5, 10rrxplusgvscavalb 24608 . . . 4 ((((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (𝑝 = (((1 − 𝑡)( ·𝑠𝐸)𝑋)(+g𝐸)(𝑡( ·𝑠𝐸)𝑌)) ↔ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖)))))
3029rexbidva 3170 . . 3 (((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠𝐸)𝑋)(+g𝐸)(𝑡( ·𝑠𝐸)𝑌)) ↔ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖)))))
3130rabbidva 3420 . 2 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠𝐸)𝑋)(+g𝐸)(𝑡( ·𝑠𝐸)𝑌))} = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖)))})
326, 31eqtrd 2776 1 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1539  wcel 2104  wne 2941  wral 3062  wrex 3071  {crab 3303  cfv 6458  (class class class)co 7307  m cmap 8646  Fincfn 8764  cr 10920  1c1 10922   + caddc 10924   · cmul 10926  cmin 11255  Basecbs 16961  +gcplusg 17011   ·𝑠 cvsca 17015  ℝ^crrx 24596  LineMcline 46317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10977  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998  ax-pre-sup 10999  ax-addf 11000  ax-mulf 11001
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3304  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-tp 4570  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-of 7565  df-om 7745  df-1st 7863  df-2nd 7864  df-supp 8009  df-tpos 8073  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-map 8648  df-ixp 8717  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-fsupp 9177  df-sup 9249  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-div 11683  df-nn 12024  df-2 12086  df-3 12087  df-4 12088  df-5 12089  df-6 12090  df-7 12091  df-8 12092  df-9 12093  df-n0 12284  df-z 12370  df-dec 12488  df-uz 12633  df-rp 12781  df-fz 13290  df-seq 13772  df-exp 13833  df-cj 14859  df-re 14860  df-im 14861  df-sqrt 14995  df-abs 14996  df-struct 16897  df-sets 16914  df-slot 16932  df-ndx 16944  df-base 16962  df-ress 16991  df-plusg 17024  df-mulr 17025  df-starv 17026  df-sca 17027  df-vsca 17028  df-ip 17029  df-tset 17030  df-ple 17031  df-ds 17033  df-unif 17034  df-hom 17035  df-cco 17036  df-0g 17201  df-prds 17207  df-pws 17209  df-mgm 18375  df-sgrp 18424  df-mnd 18435  df-mhm 18479  df-grp 18629  df-minusg 18630  df-sbg 18631  df-subg 18801  df-ghm 18881  df-cmn 19437  df-mgp 19770  df-ur 19787  df-ring 19834  df-cring 19835  df-oppr 19911  df-dvdsr 19932  df-unit 19933  df-invr 19963  df-dvr 19974  df-rnghom 20008  df-drng 20042  df-field 20043  df-subrg 20071  df-staf 20154  df-srng 20155  df-lmod 20174  df-lss 20243  df-sra 20483  df-rgmod 20484  df-cnfld 20647  df-refld 20859  df-dsmm 20988  df-frlm 21003  df-tng 23789  df-tcph 24382  df-rrx 24598  df-line 46319
This theorem is referenced by:  rrx2line  46330
  Copyright terms: Public domain W3C validator