Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrxlinec Structured version   Visualization version   GIF version

Theorem rrxlinec 43304
 Description: The line passing through the two different points 𝑋 and 𝑌 in a generalized real Euclidean space of finite dimension, expressed by its coordinates. Remark: This proof is shorter and requires less distinct variables than the proof using rrxlinesc 43303. (Contributed by AV, 13-Feb-2023.)
Hypotheses
Ref Expression
rrxlinesc.e 𝐸 = (ℝ^‘𝐼)
rrxlinesc.p 𝑃 = (ℝ ↑𝑚 𝐼)
rrxlinesc.l 𝐿 = (LineM𝐸)
Assertion
Ref Expression
rrxlinec ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖)))})
Distinct variable groups:   𝐸,𝑝,𝑡   𝑖,𝐼,𝑝,𝑡   𝑃,𝑖,𝑝,𝑡   𝑖,𝑋,𝑝,𝑡   𝑖,𝑌,𝑝,𝑡
Allowed substitution hints:   𝐸(𝑖)   𝐿(𝑡,𝑖,𝑝)

Proof of Theorem rrxlinec
StepHypRef Expression
1 rrxlinesc.e . . 3 𝐸 = (ℝ^‘𝐼)
2 rrxlinesc.p . . 3 𝑃 = (ℝ ↑𝑚 𝐼)
3 rrxlinesc.l . . 3 𝐿 = (LineM𝐸)
4 eqid 2825 . . 3 ( ·𝑠𝐸) = ( ·𝑠𝐸)
5 eqid 2825 . . 3 (+g𝐸) = (+g𝐸)
61, 2, 3, 4, 5rrxline 43302 . 2 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠𝐸)𝑋)(+g𝐸)(𝑡( ·𝑠𝐸)𝑌))})
7 eqid 2825 . . . . 5 (Base‘𝐸) = (Base‘𝐸)
8 simplll 791 . . . . 5 ((((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝐼 ∈ Fin)
9 1red 10364 . . . . . 6 ((((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 1 ∈ ℝ)
10 simpr 479 . . . . . 6 ((((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
119, 10resubcld 10789 . . . . 5 ((((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) ∈ ℝ)
12 id 22 . . . . . . . . . . . 12 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
1312, 1, 7rrxbasefi 23585 . . . . . . . . . . 11 (𝐼 ∈ Fin → (Base‘𝐸) = (ℝ ↑𝑚 𝐼))
1413, 2syl6reqr 2880 . . . . . . . . . 10 (𝐼 ∈ Fin → 𝑃 = (Base‘𝐸))
1514eleq2d 2892 . . . . . . . . 9 (𝐼 ∈ Fin → (𝑋𝑃𝑋 ∈ (Base‘𝐸)))
1615biimpcd 241 . . . . . . . 8 (𝑋𝑃 → (𝐼 ∈ Fin → 𝑋 ∈ (Base‘𝐸)))
17163ad2ant1 1167 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐼 ∈ Fin → 𝑋 ∈ (Base‘𝐸)))
1817impcom 398 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → 𝑋 ∈ (Base‘𝐸))
1918ad2antrr 717 . . . . 5 ((((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝑋 ∈ (Base‘𝐸))
2014eleq2d 2892 . . . . . . . . 9 (𝐼 ∈ Fin → (𝑌𝑃𝑌 ∈ (Base‘𝐸)))
2120biimpcd 241 . . . . . . . 8 (𝑌𝑃 → (𝐼 ∈ Fin → 𝑌 ∈ (Base‘𝐸)))
22213ad2ant2 1168 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐼 ∈ Fin → 𝑌 ∈ (Base‘𝐸)))
2322impcom 398 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → 𝑌 ∈ (Base‘𝐸))
2423ad2antrr 717 . . . . 5 ((((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝑌 ∈ (Base‘𝐸))
2514adantr 474 . . . . . . . 8 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → 𝑃 = (Base‘𝐸))
2625eleq2d 2892 . . . . . . 7 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑝𝑃𝑝 ∈ (Base‘𝐸)))
2726biimpa 470 . . . . . 6 (((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → 𝑝 ∈ (Base‘𝐸))
2827adantr 474 . . . . 5 ((((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝑝 ∈ (Base‘𝐸))
291, 7, 4, 8, 11, 19, 24, 28, 5, 10rrxplusgvscavalb 23570 . . . 4 ((((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (𝑝 = (((1 − 𝑡)( ·𝑠𝐸)𝑋)(+g𝐸)(𝑡( ·𝑠𝐸)𝑌)) ↔ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖)))))
3029rexbidva 3259 . . 3 (((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠𝐸)𝑋)(+g𝐸)(𝑡( ·𝑠𝐸)𝑌)) ↔ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖)))))
3130rabbidva 3401 . 2 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠𝐸)𝑋)(+g𝐸)(𝑡( ·𝑠𝐸)𝑌))} = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖)))})
326, 31eqtrd 2861 1 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖)))})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   ∧ w3a 1111   = wceq 1656   ∈ wcel 2164   ≠ wne 2999  ∀wral 3117  ∃wrex 3118  {crab 3121  ‘cfv 6127  (class class class)co 6910   ↑𝑚 cmap 8127  Fincfn 8228  ℝcr 10258  1c1 10260   + caddc 10262   · cmul 10264   − cmin 10592  Basecbs 16229  +gcplusg 16312   ·𝑠 cvsca 16316  ℝ^crrx 23558  LineMcline 43295 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337  ax-addf 10338  ax-mulf 10339 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-of 7162  df-om 7332  df-1st 7433  df-2nd 7434  df-supp 7565  df-tpos 7622  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-map 8129  df-ixp 8182  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-fsupp 8551  df-sup 8623  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-uz 11976  df-rp 12120  df-fz 12627  df-seq 13103  df-exp 13162  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-mulr 16326  df-starv 16327  df-sca 16328  df-vsca 16329  df-ip 16330  df-tset 16331  df-ple 16332  df-ds 16334  df-unif 16335  df-hom 16336  df-cco 16337  df-0g 16462  df-prds 16468  df-pws 16470  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-mhm 17695  df-grp 17786  df-minusg 17787  df-sbg 17788  df-subg 17949  df-ghm 18016  df-cmn 18555  df-mgp 18851  df-ur 18863  df-ring 18910  df-cring 18911  df-oppr 18984  df-dvdsr 19002  df-unit 19003  df-invr 19033  df-dvr 19044  df-rnghom 19078  df-drng 19112  df-field 19113  df-subrg 19141  df-staf 19208  df-srng 19209  df-lmod 19228  df-lss 19296  df-sra 19540  df-rgmod 19541  df-cnfld 20114  df-refld 20319  df-dsmm 20446  df-frlm 20461  df-tng 22766  df-tcph 23345  df-rrx 23560  df-line 43297 This theorem is referenced by:  rrx2line  43308
 Copyright terms: Public domain W3C validator