Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrxlinec | Structured version Visualization version GIF version |
Description: The line passing through the two different points 𝑋 and 𝑌 in a generalized real Euclidean space of finite dimension, expressed by its coordinates. Remark: This proof is shorter and requires less distinct variables than the proof using rrxlinesc 46325. (Contributed by AV, 13-Feb-2023.) |
Ref | Expression |
---|---|
rrxlinesc.e | ⊢ 𝐸 = (ℝ^‘𝐼) |
rrxlinesc.p | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
rrxlinesc.l | ⊢ 𝐿 = (LineM‘𝐸) |
Ref | Expression |
---|---|
rrxlinec | ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖)))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxlinesc.e | . . 3 ⊢ 𝐸 = (ℝ^‘𝐼) | |
2 | rrxlinesc.p | . . 3 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
3 | rrxlinesc.l | . . 3 ⊢ 𝐿 = (LineM‘𝐸) | |
4 | eqid 2736 | . . 3 ⊢ ( ·𝑠 ‘𝐸) = ( ·𝑠 ‘𝐸) | |
5 | eqid 2736 | . . 3 ⊢ (+g‘𝐸) = (+g‘𝐸) | |
6 | 1, 2, 3, 4, 5 | rrxline 46324 | . 2 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠 ‘𝐸)𝑋)(+g‘𝐸)(𝑡( ·𝑠 ‘𝐸)𝑌))}) |
7 | eqid 2736 | . . . . 5 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
8 | simplll 773 | . . . . 5 ⊢ ((((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 𝐼 ∈ Fin) | |
9 | 1red 11026 | . . . . . 6 ⊢ ((((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 1 ∈ ℝ) | |
10 | simpr 486 | . . . . . 6 ⊢ ((((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ) | |
11 | 9, 10 | resubcld 11453 | . . . . 5 ⊢ ((((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) ∈ ℝ) |
12 | id 22 | . . . . . . . . . . . 12 ⊢ (𝐼 ∈ Fin → 𝐼 ∈ Fin) | |
13 | 12, 1, 7 | rrxbasefi 24623 | . . . . . . . . . . 11 ⊢ (𝐼 ∈ Fin → (Base‘𝐸) = (ℝ ↑m 𝐼)) |
14 | 2, 13 | eqtr4id 2795 | . . . . . . . . . 10 ⊢ (𝐼 ∈ Fin → 𝑃 = (Base‘𝐸)) |
15 | 14 | eleq2d 2822 | . . . . . . . . 9 ⊢ (𝐼 ∈ Fin → (𝑋 ∈ 𝑃 ↔ 𝑋 ∈ (Base‘𝐸))) |
16 | 15 | biimpcd 249 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑃 → (𝐼 ∈ Fin → 𝑋 ∈ (Base‘𝐸))) |
17 | 16 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐼 ∈ Fin → 𝑋 ∈ (Base‘𝐸))) |
18 | 17 | impcom 409 | . . . . . 6 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → 𝑋 ∈ (Base‘𝐸)) |
19 | 18 | ad2antrr 724 | . . . . 5 ⊢ ((((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 𝑋 ∈ (Base‘𝐸)) |
20 | 14 | eleq2d 2822 | . . . . . . . . 9 ⊢ (𝐼 ∈ Fin → (𝑌 ∈ 𝑃 ↔ 𝑌 ∈ (Base‘𝐸))) |
21 | 20 | biimpcd 249 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝑃 → (𝐼 ∈ Fin → 𝑌 ∈ (Base‘𝐸))) |
22 | 21 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐼 ∈ Fin → 𝑌 ∈ (Base‘𝐸))) |
23 | 22 | impcom 409 | . . . . . 6 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → 𝑌 ∈ (Base‘𝐸)) |
24 | 23 | ad2antrr 724 | . . . . 5 ⊢ ((((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 𝑌 ∈ (Base‘𝐸)) |
25 | 14 | adantr 482 | . . . . . . . 8 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → 𝑃 = (Base‘𝐸)) |
26 | 25 | eleq2d 2822 | . . . . . . 7 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → (𝑝 ∈ 𝑃 ↔ 𝑝 ∈ (Base‘𝐸))) |
27 | 26 | biimpa 478 | . . . . . 6 ⊢ (((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑝 ∈ 𝑃) → 𝑝 ∈ (Base‘𝐸)) |
28 | 27 | adantr 482 | . . . . 5 ⊢ ((((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 𝑝 ∈ (Base‘𝐸)) |
29 | 1, 7, 4, 8, 11, 19, 24, 28, 5, 10 | rrxplusgvscavalb 24608 | . . . 4 ⊢ ((((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → (𝑝 = (((1 − 𝑡)( ·𝑠 ‘𝐸)𝑋)(+g‘𝐸)(𝑡( ·𝑠 ‘𝐸)𝑌)) ↔ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖))))) |
30 | 29 | rexbidva 3170 | . . 3 ⊢ (((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑝 ∈ 𝑃) → (∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠 ‘𝐸)𝑋)(+g‘𝐸)(𝑡( ·𝑠 ‘𝐸)𝑌)) ↔ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖))))) |
31 | 30 | rabbidva 3420 | . 2 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠 ‘𝐸)𝑋)(+g‘𝐸)(𝑡( ·𝑠 ‘𝐸)𝑌))} = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖)))}) |
32 | 6, 31 | eqtrd 2776 | 1 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖)))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 {crab 3303 ‘cfv 6458 (class class class)co 7307 ↑m cmap 8646 Fincfn 8764 ℝcr 10920 1c1 10922 + caddc 10924 · cmul 10926 − cmin 11255 Basecbs 16961 +gcplusg 17011 ·𝑠 cvsca 17015 ℝ^crrx 24596 LineMcline 46317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-pre-sup 10999 ax-addf 11000 ax-mulf 11001 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-tpos 8073 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9177 df-sup 9249 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 df-9 12093 df-n0 12284 df-z 12370 df-dec 12488 df-uz 12633 df-rp 12781 df-fz 13290 df-seq 13772 df-exp 13833 df-cj 14859 df-re 14860 df-im 14861 df-sqrt 14995 df-abs 14996 df-struct 16897 df-sets 16914 df-slot 16932 df-ndx 16944 df-base 16962 df-ress 16991 df-plusg 17024 df-mulr 17025 df-starv 17026 df-sca 17027 df-vsca 17028 df-ip 17029 df-tset 17030 df-ple 17031 df-ds 17033 df-unif 17034 df-hom 17035 df-cco 17036 df-0g 17201 df-prds 17207 df-pws 17209 df-mgm 18375 df-sgrp 18424 df-mnd 18435 df-mhm 18479 df-grp 18629 df-minusg 18630 df-sbg 18631 df-subg 18801 df-ghm 18881 df-cmn 19437 df-mgp 19770 df-ur 19787 df-ring 19834 df-cring 19835 df-oppr 19911 df-dvdsr 19932 df-unit 19933 df-invr 19963 df-dvr 19974 df-rnghom 20008 df-drng 20042 df-field 20043 df-subrg 20071 df-staf 20154 df-srng 20155 df-lmod 20174 df-lss 20243 df-sra 20483 df-rgmod 20484 df-cnfld 20647 df-refld 20859 df-dsmm 20988 df-frlm 21003 df-tng 23789 df-tcph 24382 df-rrx 24598 df-line 46319 |
This theorem is referenced by: rrx2line 46330 |
Copyright terms: Public domain | W3C validator |