| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrxlinec | Structured version Visualization version GIF version | ||
| Description: The line passing through the two different points 𝑋 and 𝑌 in a generalized real Euclidean space of finite dimension, expressed by its coordinates. Remark: This proof is shorter and requires less distinct variables than the proof using rrxlinesc 48897. (Contributed by AV, 13-Feb-2023.) |
| Ref | Expression |
|---|---|
| rrxlinesc.e | ⊢ 𝐸 = (ℝ^‘𝐼) |
| rrxlinesc.p | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
| rrxlinesc.l | ⊢ 𝐿 = (LineM‘𝐸) |
| Ref | Expression |
|---|---|
| rrxlinec | ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖)))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxlinesc.e | . . 3 ⊢ 𝐸 = (ℝ^‘𝐼) | |
| 2 | rrxlinesc.p | . . 3 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 3 | rrxlinesc.l | . . 3 ⊢ 𝐿 = (LineM‘𝐸) | |
| 4 | eqid 2733 | . . 3 ⊢ ( ·𝑠 ‘𝐸) = ( ·𝑠 ‘𝐸) | |
| 5 | eqid 2733 | . . 3 ⊢ (+g‘𝐸) = (+g‘𝐸) | |
| 6 | 1, 2, 3, 4, 5 | rrxline 48896 | . 2 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠 ‘𝐸)𝑋)(+g‘𝐸)(𝑡( ·𝑠 ‘𝐸)𝑌))}) |
| 7 | eqid 2733 | . . . . 5 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 8 | simplll 774 | . . . . 5 ⊢ ((((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 𝐼 ∈ Fin) | |
| 9 | 1red 11124 | . . . . . 6 ⊢ ((((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 1 ∈ ℝ) | |
| 10 | simpr 484 | . . . . . 6 ⊢ ((((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ) | |
| 11 | 9, 10 | resubcld 11556 | . . . . 5 ⊢ ((((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) ∈ ℝ) |
| 12 | id 22 | . . . . . . . . . . . 12 ⊢ (𝐼 ∈ Fin → 𝐼 ∈ Fin) | |
| 13 | 12, 1, 7 | rrxbasefi 25357 | . . . . . . . . . . 11 ⊢ (𝐼 ∈ Fin → (Base‘𝐸) = (ℝ ↑m 𝐼)) |
| 14 | 2, 13 | eqtr4id 2787 | . . . . . . . . . 10 ⊢ (𝐼 ∈ Fin → 𝑃 = (Base‘𝐸)) |
| 15 | 14 | eleq2d 2819 | . . . . . . . . 9 ⊢ (𝐼 ∈ Fin → (𝑋 ∈ 𝑃 ↔ 𝑋 ∈ (Base‘𝐸))) |
| 16 | 15 | biimpcd 249 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑃 → (𝐼 ∈ Fin → 𝑋 ∈ (Base‘𝐸))) |
| 17 | 16 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐼 ∈ Fin → 𝑋 ∈ (Base‘𝐸))) |
| 18 | 17 | impcom 407 | . . . . . 6 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → 𝑋 ∈ (Base‘𝐸)) |
| 19 | 18 | ad2antrr 726 | . . . . 5 ⊢ ((((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 𝑋 ∈ (Base‘𝐸)) |
| 20 | 14 | eleq2d 2819 | . . . . . . . . 9 ⊢ (𝐼 ∈ Fin → (𝑌 ∈ 𝑃 ↔ 𝑌 ∈ (Base‘𝐸))) |
| 21 | 20 | biimpcd 249 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝑃 → (𝐼 ∈ Fin → 𝑌 ∈ (Base‘𝐸))) |
| 22 | 21 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐼 ∈ Fin → 𝑌 ∈ (Base‘𝐸))) |
| 23 | 22 | impcom 407 | . . . . . 6 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → 𝑌 ∈ (Base‘𝐸)) |
| 24 | 23 | ad2antrr 726 | . . . . 5 ⊢ ((((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 𝑌 ∈ (Base‘𝐸)) |
| 25 | 14 | adantr 480 | . . . . . . . 8 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → 𝑃 = (Base‘𝐸)) |
| 26 | 25 | eleq2d 2819 | . . . . . . 7 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → (𝑝 ∈ 𝑃 ↔ 𝑝 ∈ (Base‘𝐸))) |
| 27 | 26 | biimpa 476 | . . . . . 6 ⊢ (((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑝 ∈ 𝑃) → 𝑝 ∈ (Base‘𝐸)) |
| 28 | 27 | adantr 480 | . . . . 5 ⊢ ((((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 𝑝 ∈ (Base‘𝐸)) |
| 29 | 1, 7, 4, 8, 11, 19, 24, 28, 5, 10 | rrxplusgvscavalb 25342 | . . . 4 ⊢ ((((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → (𝑝 = (((1 − 𝑡)( ·𝑠 ‘𝐸)𝑋)(+g‘𝐸)(𝑡( ·𝑠 ‘𝐸)𝑌)) ↔ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖))))) |
| 30 | 29 | rexbidva 3155 | . . 3 ⊢ (((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑝 ∈ 𝑃) → (∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠 ‘𝐸)𝑋)(+g‘𝐸)(𝑡( ·𝑠 ‘𝐸)𝑌)) ↔ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖))))) |
| 31 | 30 | rabbidva 3402 | . 2 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠 ‘𝐸)𝑋)(+g‘𝐸)(𝑡( ·𝑠 ‘𝐸)𝑌))} = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖)))}) |
| 32 | 6, 31 | eqtrd 2768 | 1 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖)))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ∃wrex 3057 {crab 3396 ‘cfv 6489 (class class class)co 7355 ↑m cmap 8759 Fincfn 8879 ℝcr 11016 1c1 11018 + caddc 11020 · cmul 11022 − cmin 11355 Basecbs 17127 +gcplusg 17168 ·𝑠 cvsca 17172 ℝ^crrx 25330 LineMcline 48889 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 ax-addf 11096 ax-mulf 11097 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-sup 9337 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-rp 12897 df-fz 13415 df-seq 13916 df-exp 13976 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-starv 17183 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ds 17190 df-unif 17191 df-hom 17192 df-cco 17193 df-0g 17352 df-prds 17358 df-pws 17360 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-mhm 18699 df-grp 18857 df-minusg 18858 df-sbg 18859 df-subg 19044 df-ghm 19133 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-cring 20162 df-oppr 20264 df-dvdsr 20284 df-unit 20285 df-invr 20315 df-dvr 20328 df-rhm 20399 df-subrng 20470 df-subrg 20494 df-drng 20655 df-field 20656 df-staf 20763 df-srng 20764 df-lmod 20804 df-lss 20874 df-sra 21116 df-rgmod 21117 df-cnfld 21301 df-refld 21551 df-dsmm 21678 df-frlm 21693 df-tng 24519 df-tcph 25116 df-rrx 25332 df-line 48891 |
| This theorem is referenced by: rrx2line 48902 |
| Copyright terms: Public domain | W3C validator |