Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrxlinec | Structured version Visualization version GIF version |
Description: The line passing through the two different points 𝑋 and 𝑌 in a generalized real Euclidean space of finite dimension, expressed by its coordinates. Remark: This proof is shorter and requires less distinct variables than the proof using rrxlinesc 46033. (Contributed by AV, 13-Feb-2023.) |
Ref | Expression |
---|---|
rrxlinesc.e | ⊢ 𝐸 = (ℝ^‘𝐼) |
rrxlinesc.p | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
rrxlinesc.l | ⊢ 𝐿 = (LineM‘𝐸) |
Ref | Expression |
---|---|
rrxlinec | ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖)))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxlinesc.e | . . 3 ⊢ 𝐸 = (ℝ^‘𝐼) | |
2 | rrxlinesc.p | . . 3 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
3 | rrxlinesc.l | . . 3 ⊢ 𝐿 = (LineM‘𝐸) | |
4 | eqid 2739 | . . 3 ⊢ ( ·𝑠 ‘𝐸) = ( ·𝑠 ‘𝐸) | |
5 | eqid 2739 | . . 3 ⊢ (+g‘𝐸) = (+g‘𝐸) | |
6 | 1, 2, 3, 4, 5 | rrxline 46032 | . 2 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠 ‘𝐸)𝑋)(+g‘𝐸)(𝑡( ·𝑠 ‘𝐸)𝑌))}) |
7 | eqid 2739 | . . . . 5 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
8 | simplll 771 | . . . . 5 ⊢ ((((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 𝐼 ∈ Fin) | |
9 | 1red 10960 | . . . . . 6 ⊢ ((((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 1 ∈ ℝ) | |
10 | simpr 484 | . . . . . 6 ⊢ ((((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ) | |
11 | 9, 10 | resubcld 11386 | . . . . 5 ⊢ ((((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) ∈ ℝ) |
12 | id 22 | . . . . . . . . . . . 12 ⊢ (𝐼 ∈ Fin → 𝐼 ∈ Fin) | |
13 | 12, 1, 7 | rrxbasefi 24555 | . . . . . . . . . . 11 ⊢ (𝐼 ∈ Fin → (Base‘𝐸) = (ℝ ↑m 𝐼)) |
14 | 2, 13 | eqtr4id 2798 | . . . . . . . . . 10 ⊢ (𝐼 ∈ Fin → 𝑃 = (Base‘𝐸)) |
15 | 14 | eleq2d 2825 | . . . . . . . . 9 ⊢ (𝐼 ∈ Fin → (𝑋 ∈ 𝑃 ↔ 𝑋 ∈ (Base‘𝐸))) |
16 | 15 | biimpcd 248 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑃 → (𝐼 ∈ Fin → 𝑋 ∈ (Base‘𝐸))) |
17 | 16 | 3ad2ant1 1131 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐼 ∈ Fin → 𝑋 ∈ (Base‘𝐸))) |
18 | 17 | impcom 407 | . . . . . 6 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → 𝑋 ∈ (Base‘𝐸)) |
19 | 18 | ad2antrr 722 | . . . . 5 ⊢ ((((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 𝑋 ∈ (Base‘𝐸)) |
20 | 14 | eleq2d 2825 | . . . . . . . . 9 ⊢ (𝐼 ∈ Fin → (𝑌 ∈ 𝑃 ↔ 𝑌 ∈ (Base‘𝐸))) |
21 | 20 | biimpcd 248 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝑃 → (𝐼 ∈ Fin → 𝑌 ∈ (Base‘𝐸))) |
22 | 21 | 3ad2ant2 1132 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐼 ∈ Fin → 𝑌 ∈ (Base‘𝐸))) |
23 | 22 | impcom 407 | . . . . . 6 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → 𝑌 ∈ (Base‘𝐸)) |
24 | 23 | ad2antrr 722 | . . . . 5 ⊢ ((((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 𝑌 ∈ (Base‘𝐸)) |
25 | 14 | adantr 480 | . . . . . . . 8 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → 𝑃 = (Base‘𝐸)) |
26 | 25 | eleq2d 2825 | . . . . . . 7 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → (𝑝 ∈ 𝑃 ↔ 𝑝 ∈ (Base‘𝐸))) |
27 | 26 | biimpa 476 | . . . . . 6 ⊢ (((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑝 ∈ 𝑃) → 𝑝 ∈ (Base‘𝐸)) |
28 | 27 | adantr 480 | . . . . 5 ⊢ ((((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 𝑝 ∈ (Base‘𝐸)) |
29 | 1, 7, 4, 8, 11, 19, 24, 28, 5, 10 | rrxplusgvscavalb 24540 | . . . 4 ⊢ ((((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → (𝑝 = (((1 − 𝑡)( ·𝑠 ‘𝐸)𝑋)(+g‘𝐸)(𝑡( ·𝑠 ‘𝐸)𝑌)) ↔ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖))))) |
30 | 29 | rexbidva 3226 | . . 3 ⊢ (((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑝 ∈ 𝑃) → (∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠 ‘𝐸)𝑋)(+g‘𝐸)(𝑡( ·𝑠 ‘𝐸)𝑌)) ↔ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖))))) |
31 | 30 | rabbidva 3410 | . 2 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠 ‘𝐸)𝑋)(+g‘𝐸)(𝑡( ·𝑠 ‘𝐸)𝑌))} = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖)))}) |
32 | 6, 31 | eqtrd 2779 | 1 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖)))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∀wral 3065 ∃wrex 3066 {crab 3069 ‘cfv 6430 (class class class)co 7268 ↑m cmap 8589 Fincfn 8707 ℝcr 10854 1c1 10856 + caddc 10858 · cmul 10860 − cmin 11188 Basecbs 16893 +gcplusg 16943 ·𝑠 cvsca 16947 ℝ^crrx 24528 LineMcline 46025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 ax-addf 10934 ax-mulf 10935 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 df-om 7701 df-1st 7817 df-2nd 7818 df-supp 7962 df-tpos 8026 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-ixp 8660 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-fsupp 9090 df-sup 9162 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-rp 12713 df-fz 13222 df-seq 13703 df-exp 13764 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulr 16957 df-starv 16958 df-sca 16959 df-vsca 16960 df-ip 16961 df-tset 16962 df-ple 16963 df-ds 16965 df-unif 16966 df-hom 16967 df-cco 16968 df-0g 17133 df-prds 17139 df-pws 17141 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-mhm 18411 df-grp 18561 df-minusg 18562 df-sbg 18563 df-subg 18733 df-ghm 18813 df-cmn 19369 df-mgp 19702 df-ur 19719 df-ring 19766 df-cring 19767 df-oppr 19843 df-dvdsr 19864 df-unit 19865 df-invr 19895 df-dvr 19906 df-rnghom 19940 df-drng 19974 df-field 19975 df-subrg 20003 df-staf 20086 df-srng 20087 df-lmod 20106 df-lss 20175 df-sra 20415 df-rgmod 20416 df-cnfld 20579 df-refld 20791 df-dsmm 20920 df-frlm 20935 df-tng 23721 df-tcph 24314 df-rrx 24530 df-line 46027 |
This theorem is referenced by: rrx2line 46038 |
Copyright terms: Public domain | W3C validator |