Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldivexpfllog2 Structured version   Visualization version   GIF version

Theorem fldivexpfllog2 48415
Description: The floor of a positive real number divided by 2 to the power of the floor of the logarithm to base 2 of the number is 1. (Contributed by AV, 26-May-2020.)
Assertion
Ref Expression
fldivexpfllog2 (𝑋 ∈ ℝ+ → (⌊‘(𝑋 / (2↑(⌊‘(2 logb 𝑋))))) = 1)

Proof of Theorem fldivexpfllog2
StepHypRef Expression
1 2z 12647 . . . . 5 2 ∈ ℤ
2 uzid 12891 . . . . 5 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
31, 2mp1i 13 . . . 4 (𝑋 ∈ ℝ+ → 2 ∈ (ℤ‘2))
4 id 22 . . . 4 (𝑋 ∈ ℝ+𝑋 ∈ ℝ+)
5 eqid 2735 . . . 4 (⌊‘(2 logb 𝑋)) = (⌊‘(2 logb 𝑋))
63, 4, 5fllogbd 48410 . . 3 (𝑋 ∈ ℝ+ → ((2↑(⌊‘(2 logb 𝑋))) ≤ 𝑋𝑋 < (2↑((⌊‘(2 logb 𝑋)) + 1))))
7 2re 12338 . . . . . . . . 9 2 ∈ ℝ
87a1i 11 . . . . . . . 8 (𝑋 ∈ ℝ+ → 2 ∈ ℝ)
9 2ne0 12368 . . . . . . . . 9 2 ≠ 0
109a1i 11 . . . . . . . 8 (𝑋 ∈ ℝ+ → 2 ≠ 0)
11 relogbzcl 26832 . . . . . . . . . 10 ((2 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+) → (2 logb 𝑋) ∈ ℝ)
123, 4, 11syl2anc 584 . . . . . . . . 9 (𝑋 ∈ ℝ+ → (2 logb 𝑋) ∈ ℝ)
1312flcld 13835 . . . . . . . 8 (𝑋 ∈ ℝ+ → (⌊‘(2 logb 𝑋)) ∈ ℤ)
148, 10, 13reexpclzd 14285 . . . . . . 7 (𝑋 ∈ ℝ+ → (2↑(⌊‘(2 logb 𝑋))) ∈ ℝ)
15 2pos 12367 . . . . . . . . 9 0 < 2
1615a1i 11 . . . . . . . 8 (𝑋 ∈ ℝ+ → 0 < 2)
17 expgt0 14133 . . . . . . . 8 ((2 ∈ ℝ ∧ (⌊‘(2 logb 𝑋)) ∈ ℤ ∧ 0 < 2) → 0 < (2↑(⌊‘(2 logb 𝑋))))
188, 13, 16, 17syl3anc 1370 . . . . . . 7 (𝑋 ∈ ℝ+ → 0 < (2↑(⌊‘(2 logb 𝑋))))
1914, 18elrpd 13072 . . . . . 6 (𝑋 ∈ ℝ+ → (2↑(⌊‘(2 logb 𝑋))) ∈ ℝ+)
20 rpre 13041 . . . . . 6 (𝑋 ∈ ℝ+𝑋 ∈ ℝ)
21 divge1b 48358 . . . . . . 7 (((2↑(⌊‘(2 logb 𝑋))) ∈ ℝ+𝑋 ∈ ℝ) → ((2↑(⌊‘(2 logb 𝑋))) ≤ 𝑋 ↔ 1 ≤ (𝑋 / (2↑(⌊‘(2 logb 𝑋))))))
2221bicomd 223 . . . . . 6 (((2↑(⌊‘(2 logb 𝑋))) ∈ ℝ+𝑋 ∈ ℝ) → (1 ≤ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) ↔ (2↑(⌊‘(2 logb 𝑋))) ≤ 𝑋))
2319, 20, 22syl2anc 584 . . . . 5 (𝑋 ∈ ℝ+ → (1 ≤ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) ↔ (2↑(⌊‘(2 logb 𝑋))) ≤ 𝑋))
2423biimprd 248 . . . 4 (𝑋 ∈ ℝ+ → ((2↑(⌊‘(2 logb 𝑋))) ≤ 𝑋 → 1 ≤ (𝑋 / (2↑(⌊‘(2 logb 𝑋))))))
25 2cnd 12342 . . . . . . . . 9 (𝑋 ∈ ℝ+ → 2 ∈ ℂ)
2625, 10, 13expp1zd 14192 . . . . . . . 8 (𝑋 ∈ ℝ+ → (2↑((⌊‘(2 logb 𝑋)) + 1)) = ((2↑(⌊‘(2 logb 𝑋))) · 2))
2726breq2d 5160 . . . . . . 7 (𝑋 ∈ ℝ+ → (𝑋 < (2↑((⌊‘(2 logb 𝑋)) + 1)) ↔ 𝑋 < ((2↑(⌊‘(2 logb 𝑋))) · 2)))
28 ltdivmul 12141 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 2 ∈ ℝ ∧ ((2↑(⌊‘(2 logb 𝑋))) ∈ ℝ ∧ 0 < (2↑(⌊‘(2 logb 𝑋))))) → ((𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < 2 ↔ 𝑋 < ((2↑(⌊‘(2 logb 𝑋))) · 2)))
2920, 8, 14, 18, 28syl112anc 1373 . . . . . . 7 (𝑋 ∈ ℝ+ → ((𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < 2 ↔ 𝑋 < ((2↑(⌊‘(2 logb 𝑋))) · 2)))
3027, 29bitr4d 282 . . . . . 6 (𝑋 ∈ ℝ+ → (𝑋 < (2↑((⌊‘(2 logb 𝑋)) + 1)) ↔ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < 2))
3130biimpd 229 . . . . 5 (𝑋 ∈ ℝ+ → (𝑋 < (2↑((⌊‘(2 logb 𝑋)) + 1)) → (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < 2))
32 1p1e2 12389 . . . . . 6 (1 + 1) = 2
3332breq2i 5156 . . . . 5 ((𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < (1 + 1) ↔ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < 2)
3431, 33imbitrrdi 252 . . . 4 (𝑋 ∈ ℝ+ → (𝑋 < (2↑((⌊‘(2 logb 𝑋)) + 1)) → (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < (1 + 1)))
3524, 34anim12d 609 . . 3 (𝑋 ∈ ℝ+ → (((2↑(⌊‘(2 logb 𝑋))) ≤ 𝑋𝑋 < (2↑((⌊‘(2 logb 𝑋)) + 1))) → (1 ≤ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) ∧ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < (1 + 1))))
366, 35mpd 15 . 2 (𝑋 ∈ ℝ+ → (1 ≤ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) ∧ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < (1 + 1)))
3725, 10, 13expne0d 14189 . . . 4 (𝑋 ∈ ℝ+ → (2↑(⌊‘(2 logb 𝑋))) ≠ 0)
3820, 14, 37redivcld 12093 . . 3 (𝑋 ∈ ℝ+ → (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) ∈ ℝ)
39 1zzd 12646 . . 3 (𝑋 ∈ ℝ+ → 1 ∈ ℤ)
40 flbi 13853 . . 3 (((𝑋 / (2↑(⌊‘(2 logb 𝑋)))) ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘(𝑋 / (2↑(⌊‘(2 logb 𝑋))))) = 1 ↔ (1 ≤ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) ∧ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < (1 + 1))))
4138, 39, 40syl2anc 584 . 2 (𝑋 ∈ ℝ+ → ((⌊‘(𝑋 / (2↑(⌊‘(2 logb 𝑋))))) = 1 ↔ (1 ≤ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) ∧ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < (1 + 1))))
4236, 41mpbird 257 1 (𝑋 ∈ ℝ+ → (⌊‘(𝑋 / (2↑(⌊‘(2 logb 𝑋))))) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294   / cdiv 11918  2c2 12319  cz 12611  cuz 12876  +crp 13032  cfl 13827  cexp 14099   logb clogb 26822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-pi 16105  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917  df-log 26613  df-cxp 26614  df-logb 26823
This theorem is referenced by:  dig2nn1st  48455
  Copyright terms: Public domain W3C validator