Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldivexpfllog2 Structured version   Visualization version   GIF version

Theorem fldivexpfllog2 47821
Description: The floor of a positive real number divided by 2 to the power of the floor of the logarithm to base 2 of the number is 1. (Contributed by AV, 26-May-2020.)
Assertion
Ref Expression
fldivexpfllog2 (𝑋 ∈ ℝ+ → (⌊‘(𝑋 / (2↑(⌊‘(2 logb 𝑋))))) = 1)

Proof of Theorem fldivexpfllog2
StepHypRef Expression
1 2z 12627 . . . . 5 2 ∈ ℤ
2 uzid 12870 . . . . 5 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
31, 2mp1i 13 . . . 4 (𝑋 ∈ ℝ+ → 2 ∈ (ℤ‘2))
4 id 22 . . . 4 (𝑋 ∈ ℝ+𝑋 ∈ ℝ+)
5 eqid 2725 . . . 4 (⌊‘(2 logb 𝑋)) = (⌊‘(2 logb 𝑋))
63, 4, 5fllogbd 47816 . . 3 (𝑋 ∈ ℝ+ → ((2↑(⌊‘(2 logb 𝑋))) ≤ 𝑋𝑋 < (2↑((⌊‘(2 logb 𝑋)) + 1))))
7 2re 12319 . . . . . . . . 9 2 ∈ ℝ
87a1i 11 . . . . . . . 8 (𝑋 ∈ ℝ+ → 2 ∈ ℝ)
9 2ne0 12349 . . . . . . . . 9 2 ≠ 0
109a1i 11 . . . . . . . 8 (𝑋 ∈ ℝ+ → 2 ≠ 0)
11 relogbzcl 26751 . . . . . . . . . 10 ((2 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+) → (2 logb 𝑋) ∈ ℝ)
123, 4, 11syl2anc 582 . . . . . . . . 9 (𝑋 ∈ ℝ+ → (2 logb 𝑋) ∈ ℝ)
1312flcld 13799 . . . . . . . 8 (𝑋 ∈ ℝ+ → (⌊‘(2 logb 𝑋)) ∈ ℤ)
148, 10, 13reexpclzd 14247 . . . . . . 7 (𝑋 ∈ ℝ+ → (2↑(⌊‘(2 logb 𝑋))) ∈ ℝ)
15 2pos 12348 . . . . . . . . 9 0 < 2
1615a1i 11 . . . . . . . 8 (𝑋 ∈ ℝ+ → 0 < 2)
17 expgt0 14096 . . . . . . . 8 ((2 ∈ ℝ ∧ (⌊‘(2 logb 𝑋)) ∈ ℤ ∧ 0 < 2) → 0 < (2↑(⌊‘(2 logb 𝑋))))
188, 13, 16, 17syl3anc 1368 . . . . . . 7 (𝑋 ∈ ℝ+ → 0 < (2↑(⌊‘(2 logb 𝑋))))
1914, 18elrpd 13048 . . . . . 6 (𝑋 ∈ ℝ+ → (2↑(⌊‘(2 logb 𝑋))) ∈ ℝ+)
20 rpre 13017 . . . . . 6 (𝑋 ∈ ℝ+𝑋 ∈ ℝ)
21 divge1b 47763 . . . . . . 7 (((2↑(⌊‘(2 logb 𝑋))) ∈ ℝ+𝑋 ∈ ℝ) → ((2↑(⌊‘(2 logb 𝑋))) ≤ 𝑋 ↔ 1 ≤ (𝑋 / (2↑(⌊‘(2 logb 𝑋))))))
2221bicomd 222 . . . . . 6 (((2↑(⌊‘(2 logb 𝑋))) ∈ ℝ+𝑋 ∈ ℝ) → (1 ≤ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) ↔ (2↑(⌊‘(2 logb 𝑋))) ≤ 𝑋))
2319, 20, 22syl2anc 582 . . . . 5 (𝑋 ∈ ℝ+ → (1 ≤ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) ↔ (2↑(⌊‘(2 logb 𝑋))) ≤ 𝑋))
2423biimprd 247 . . . 4 (𝑋 ∈ ℝ+ → ((2↑(⌊‘(2 logb 𝑋))) ≤ 𝑋 → 1 ≤ (𝑋 / (2↑(⌊‘(2 logb 𝑋))))))
25 2cnd 12323 . . . . . . . . 9 (𝑋 ∈ ℝ+ → 2 ∈ ℂ)
2625, 10, 13expp1zd 14155 . . . . . . . 8 (𝑋 ∈ ℝ+ → (2↑((⌊‘(2 logb 𝑋)) + 1)) = ((2↑(⌊‘(2 logb 𝑋))) · 2))
2726breq2d 5161 . . . . . . 7 (𝑋 ∈ ℝ+ → (𝑋 < (2↑((⌊‘(2 logb 𝑋)) + 1)) ↔ 𝑋 < ((2↑(⌊‘(2 logb 𝑋))) · 2)))
28 ltdivmul 12122 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 2 ∈ ℝ ∧ ((2↑(⌊‘(2 logb 𝑋))) ∈ ℝ ∧ 0 < (2↑(⌊‘(2 logb 𝑋))))) → ((𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < 2 ↔ 𝑋 < ((2↑(⌊‘(2 logb 𝑋))) · 2)))
2920, 8, 14, 18, 28syl112anc 1371 . . . . . . 7 (𝑋 ∈ ℝ+ → ((𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < 2 ↔ 𝑋 < ((2↑(⌊‘(2 logb 𝑋))) · 2)))
3027, 29bitr4d 281 . . . . . 6 (𝑋 ∈ ℝ+ → (𝑋 < (2↑((⌊‘(2 logb 𝑋)) + 1)) ↔ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < 2))
3130biimpd 228 . . . . 5 (𝑋 ∈ ℝ+ → (𝑋 < (2↑((⌊‘(2 logb 𝑋)) + 1)) → (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < 2))
32 1p1e2 12370 . . . . . 6 (1 + 1) = 2
3332breq2i 5157 . . . . 5 ((𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < (1 + 1) ↔ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < 2)
3431, 33imbitrrdi 251 . . . 4 (𝑋 ∈ ℝ+ → (𝑋 < (2↑((⌊‘(2 logb 𝑋)) + 1)) → (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < (1 + 1)))
3524, 34anim12d 607 . . 3 (𝑋 ∈ ℝ+ → (((2↑(⌊‘(2 logb 𝑋))) ≤ 𝑋𝑋 < (2↑((⌊‘(2 logb 𝑋)) + 1))) → (1 ≤ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) ∧ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < (1 + 1))))
366, 35mpd 15 . 2 (𝑋 ∈ ℝ+ → (1 ≤ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) ∧ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < (1 + 1)))
3725, 10, 13expne0d 14152 . . . 4 (𝑋 ∈ ℝ+ → (2↑(⌊‘(2 logb 𝑋))) ≠ 0)
3820, 14, 37redivcld 12075 . . 3 (𝑋 ∈ ℝ+ → (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) ∈ ℝ)
39 1zzd 12626 . . 3 (𝑋 ∈ ℝ+ → 1 ∈ ℤ)
40 flbi 13817 . . 3 (((𝑋 / (2↑(⌊‘(2 logb 𝑋)))) ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘(𝑋 / (2↑(⌊‘(2 logb 𝑋))))) = 1 ↔ (1 ≤ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) ∧ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < (1 + 1))))
4138, 39, 40syl2anc 582 . 2 (𝑋 ∈ ℝ+ → ((⌊‘(𝑋 / (2↑(⌊‘(2 logb 𝑋))))) = 1 ↔ (1 ≤ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) ∧ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < (1 + 1))))
4236, 41mpbird 256 1 (𝑋 ∈ ℝ+ → (⌊‘(𝑋 / (2↑(⌊‘(2 logb 𝑋))))) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2929   class class class wbr 5149  cfv 6549  (class class class)co 7419  cr 11139  0cc0 11140  1c1 11141   + caddc 11143   · cmul 11145   < clt 11280  cle 11281   / cdiv 11903  2c2 12300  cz 12591  cuz 12855  +crp 13009  cfl 13791  cexp 14062   logb clogb 26741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-ioc 13364  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-fl 13793  df-mod 13871  df-seq 14003  df-exp 14063  df-fac 14269  df-bc 14298  df-hash 14326  df-shft 15050  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-limsup 15451  df-clim 15468  df-rlim 15469  df-sum 15669  df-ef 16047  df-sin 16049  df-cos 16050  df-pi 16052  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-rest 17407  df-topn 17408  df-0g 17426  df-gsum 17427  df-topgen 17428  df-pt 17429  df-prds 17432  df-xrs 17487  df-qtop 17492  df-imas 17493  df-xps 17495  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-mulg 19032  df-cntz 19280  df-cmn 19749  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-cld 22967  df-ntr 22968  df-cls 22969  df-nei 23046  df-lp 23084  df-perf 23085  df-cn 23175  df-cnp 23176  df-haus 23263  df-tx 23510  df-hmeo 23703  df-fil 23794  df-fm 23886  df-flim 23887  df-flf 23888  df-xms 24270  df-ms 24271  df-tms 24272  df-cncf 24842  df-limc 25839  df-dv 25840  df-log 26535  df-cxp 26536  df-logb 26742
This theorem is referenced by:  dig2nn1st  47861
  Copyright terms: Public domain W3C validator