Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fldivexpfllog2 | Structured version Visualization version GIF version |
Description: The floor of a positive real number divided by 2 to the power of the floor of the logarithm to base 2 of the number is 1. (Contributed by AV, 26-May-2020.) |
Ref | Expression |
---|---|
fldivexpfllog2 | ⊢ (𝑋 ∈ ℝ+ → (⌊‘(𝑋 / (2↑(⌊‘(2 logb 𝑋))))) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 12282 | . . . . 5 ⊢ 2 ∈ ℤ | |
2 | uzid 12526 | . . . . 5 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
3 | 1, 2 | mp1i 13 | . . . 4 ⊢ (𝑋 ∈ ℝ+ → 2 ∈ (ℤ≥‘2)) |
4 | id 22 | . . . 4 ⊢ (𝑋 ∈ ℝ+ → 𝑋 ∈ ℝ+) | |
5 | eqid 2738 | . . . 4 ⊢ (⌊‘(2 logb 𝑋)) = (⌊‘(2 logb 𝑋)) | |
6 | 3, 4, 5 | fllogbd 45794 | . . 3 ⊢ (𝑋 ∈ ℝ+ → ((2↑(⌊‘(2 logb 𝑋))) ≤ 𝑋 ∧ 𝑋 < (2↑((⌊‘(2 logb 𝑋)) + 1)))) |
7 | 2re 11977 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
8 | 7 | a1i 11 | . . . . . . . 8 ⊢ (𝑋 ∈ ℝ+ → 2 ∈ ℝ) |
9 | 2ne0 12007 | . . . . . . . . 9 ⊢ 2 ≠ 0 | |
10 | 9 | a1i 11 | . . . . . . . 8 ⊢ (𝑋 ∈ ℝ+ → 2 ≠ 0) |
11 | relogbzcl 25829 | . . . . . . . . . 10 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+) → (2 logb 𝑋) ∈ ℝ) | |
12 | 3, 4, 11 | syl2anc 583 | . . . . . . . . 9 ⊢ (𝑋 ∈ ℝ+ → (2 logb 𝑋) ∈ ℝ) |
13 | 12 | flcld 13446 | . . . . . . . 8 ⊢ (𝑋 ∈ ℝ+ → (⌊‘(2 logb 𝑋)) ∈ ℤ) |
14 | 8, 10, 13 | reexpclzd 13892 | . . . . . . 7 ⊢ (𝑋 ∈ ℝ+ → (2↑(⌊‘(2 logb 𝑋))) ∈ ℝ) |
15 | 2pos 12006 | . . . . . . . . 9 ⊢ 0 < 2 | |
16 | 15 | a1i 11 | . . . . . . . 8 ⊢ (𝑋 ∈ ℝ+ → 0 < 2) |
17 | expgt0 13744 | . . . . . . . 8 ⊢ ((2 ∈ ℝ ∧ (⌊‘(2 logb 𝑋)) ∈ ℤ ∧ 0 < 2) → 0 < (2↑(⌊‘(2 logb 𝑋)))) | |
18 | 8, 13, 16, 17 | syl3anc 1369 | . . . . . . 7 ⊢ (𝑋 ∈ ℝ+ → 0 < (2↑(⌊‘(2 logb 𝑋)))) |
19 | 14, 18 | elrpd 12698 | . . . . . 6 ⊢ (𝑋 ∈ ℝ+ → (2↑(⌊‘(2 logb 𝑋))) ∈ ℝ+) |
20 | rpre 12667 | . . . . . 6 ⊢ (𝑋 ∈ ℝ+ → 𝑋 ∈ ℝ) | |
21 | divge1b 45741 | . . . . . . 7 ⊢ (((2↑(⌊‘(2 logb 𝑋))) ∈ ℝ+ ∧ 𝑋 ∈ ℝ) → ((2↑(⌊‘(2 logb 𝑋))) ≤ 𝑋 ↔ 1 ≤ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))))) | |
22 | 21 | bicomd 222 | . . . . . 6 ⊢ (((2↑(⌊‘(2 logb 𝑋))) ∈ ℝ+ ∧ 𝑋 ∈ ℝ) → (1 ≤ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) ↔ (2↑(⌊‘(2 logb 𝑋))) ≤ 𝑋)) |
23 | 19, 20, 22 | syl2anc 583 | . . . . 5 ⊢ (𝑋 ∈ ℝ+ → (1 ≤ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) ↔ (2↑(⌊‘(2 logb 𝑋))) ≤ 𝑋)) |
24 | 23 | biimprd 247 | . . . 4 ⊢ (𝑋 ∈ ℝ+ → ((2↑(⌊‘(2 logb 𝑋))) ≤ 𝑋 → 1 ≤ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))))) |
25 | 2cnd 11981 | . . . . . . . . 9 ⊢ (𝑋 ∈ ℝ+ → 2 ∈ ℂ) | |
26 | 25, 10, 13 | expp1zd 13801 | . . . . . . . 8 ⊢ (𝑋 ∈ ℝ+ → (2↑((⌊‘(2 logb 𝑋)) + 1)) = ((2↑(⌊‘(2 logb 𝑋))) · 2)) |
27 | 26 | breq2d 5082 | . . . . . . 7 ⊢ (𝑋 ∈ ℝ+ → (𝑋 < (2↑((⌊‘(2 logb 𝑋)) + 1)) ↔ 𝑋 < ((2↑(⌊‘(2 logb 𝑋))) · 2))) |
28 | ltdivmul 11780 | . . . . . . . 8 ⊢ ((𝑋 ∈ ℝ ∧ 2 ∈ ℝ ∧ ((2↑(⌊‘(2 logb 𝑋))) ∈ ℝ ∧ 0 < (2↑(⌊‘(2 logb 𝑋))))) → ((𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < 2 ↔ 𝑋 < ((2↑(⌊‘(2 logb 𝑋))) · 2))) | |
29 | 20, 8, 14, 18, 28 | syl112anc 1372 | . . . . . . 7 ⊢ (𝑋 ∈ ℝ+ → ((𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < 2 ↔ 𝑋 < ((2↑(⌊‘(2 logb 𝑋))) · 2))) |
30 | 27, 29 | bitr4d 281 | . . . . . 6 ⊢ (𝑋 ∈ ℝ+ → (𝑋 < (2↑((⌊‘(2 logb 𝑋)) + 1)) ↔ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < 2)) |
31 | 30 | biimpd 228 | . . . . 5 ⊢ (𝑋 ∈ ℝ+ → (𝑋 < (2↑((⌊‘(2 logb 𝑋)) + 1)) → (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < 2)) |
32 | 1p1e2 12028 | . . . . . 6 ⊢ (1 + 1) = 2 | |
33 | 32 | breq2i 5078 | . . . . 5 ⊢ ((𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < (1 + 1) ↔ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < 2) |
34 | 31, 33 | syl6ibr 251 | . . . 4 ⊢ (𝑋 ∈ ℝ+ → (𝑋 < (2↑((⌊‘(2 logb 𝑋)) + 1)) → (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < (1 + 1))) |
35 | 24, 34 | anim12d 608 | . . 3 ⊢ (𝑋 ∈ ℝ+ → (((2↑(⌊‘(2 logb 𝑋))) ≤ 𝑋 ∧ 𝑋 < (2↑((⌊‘(2 logb 𝑋)) + 1))) → (1 ≤ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) ∧ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < (1 + 1)))) |
36 | 6, 35 | mpd 15 | . 2 ⊢ (𝑋 ∈ ℝ+ → (1 ≤ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) ∧ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < (1 + 1))) |
37 | 25, 10, 13 | expne0d 13798 | . . . 4 ⊢ (𝑋 ∈ ℝ+ → (2↑(⌊‘(2 logb 𝑋))) ≠ 0) |
38 | 20, 14, 37 | redivcld 11733 | . . 3 ⊢ (𝑋 ∈ ℝ+ → (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) ∈ ℝ) |
39 | 1zzd 12281 | . . 3 ⊢ (𝑋 ∈ ℝ+ → 1 ∈ ℤ) | |
40 | flbi 13464 | . . 3 ⊢ (((𝑋 / (2↑(⌊‘(2 logb 𝑋)))) ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘(𝑋 / (2↑(⌊‘(2 logb 𝑋))))) = 1 ↔ (1 ≤ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) ∧ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < (1 + 1)))) | |
41 | 38, 39, 40 | syl2anc 583 | . 2 ⊢ (𝑋 ∈ ℝ+ → ((⌊‘(𝑋 / (2↑(⌊‘(2 logb 𝑋))))) = 1 ↔ (1 ≤ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) ∧ (𝑋 / (2↑(⌊‘(2 logb 𝑋)))) < (1 + 1)))) |
42 | 36, 41 | mpbird 256 | 1 ⊢ (𝑋 ∈ ℝ+ → (⌊‘(𝑋 / (2↑(⌊‘(2 logb 𝑋))))) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 < clt 10940 ≤ cle 10941 / cdiv 11562 2c2 11958 ℤcz 12249 ℤ≥cuz 12511 ℝ+crp 12659 ⌊cfl 13438 ↑cexp 13710 logb clogb 25819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-ef 15705 df-sin 15707 df-cos 15708 df-pi 15710 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-limc 24935 df-dv 24936 df-log 25617 df-cxp 25618 df-logb 25820 |
This theorem is referenced by: dig2nn1st 45839 |
Copyright terms: Public domain | W3C validator |