![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frlmfzowrdb | Structured version Visualization version GIF version |
Description: The vectors of a module with indices 0 to 𝑁 − 1 are the length- 𝑁 words over the scalars of the module. (Contributed by SN, 1-Sep-2023.) |
Ref | Expression |
---|---|
frlmfzowrd.w | ⊢ 𝑊 = (𝐾 freeLMod (0..^𝑁)) |
frlmfzowrd.b | ⊢ 𝐵 = (Base‘𝑊) |
frlmfzowrd.s | ⊢ 𝑆 = (Base‘𝐾) |
Ref | Expression |
---|---|
frlmfzowrdb | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmfzowrd.w | . . . . 5 ⊢ 𝑊 = (𝐾 freeLMod (0..^𝑁)) | |
2 | frlmfzowrd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
3 | frlmfzowrd.s | . . . . 5 ⊢ 𝑆 = (Base‘𝐾) | |
4 | 1, 2, 3 | frlmfzowrd 41073 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ Word 𝑆) |
5 | 4 | a1i 11 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋 ∈ 𝐵 → 𝑋 ∈ Word 𝑆)) |
6 | 1, 2, 3 | frlmfzolen 41074 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (♯‘𝑋) = 𝑁) |
7 | 6 | ex 413 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑋 ∈ 𝐵 → (♯‘𝑋) = 𝑁)) |
8 | 7 | adantl 482 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋 ∈ 𝐵 → (♯‘𝑋) = 𝑁)) |
9 | 5, 8 | jcad 513 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋 ∈ 𝐵 → (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁))) |
10 | simp3l 1201 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → 𝑋 ∈ Word 𝑆) | |
11 | wrdf 14465 | . . . . . 6 ⊢ (𝑋 ∈ Word 𝑆 → 𝑋:(0..^(♯‘𝑋))⟶𝑆) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → 𝑋:(0..^(♯‘𝑋))⟶𝑆) |
13 | simp3r 1202 | . . . . . . 7 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → (♯‘𝑋) = 𝑁) | |
14 | 13 | oveq2d 7421 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → (0..^(♯‘𝑋)) = (0..^𝑁)) |
15 | 14 | feq2d 6700 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → (𝑋:(0..^(♯‘𝑋))⟶𝑆 ↔ 𝑋:(0..^𝑁)⟶𝑆)) |
16 | 12, 15 | mpbid 231 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → 𝑋:(0..^𝑁)⟶𝑆) |
17 | simp1 1136 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → 𝐾 ∈ 𝑉) | |
18 | fzofi 13935 | . . . . 5 ⊢ (0..^𝑁) ∈ Fin | |
19 | 1, 3, 2 | frlmfielbas 41071 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ (0..^𝑁) ∈ Fin) → (𝑋 ∈ 𝐵 ↔ 𝑋:(0..^𝑁)⟶𝑆)) |
20 | 17, 18, 19 | sylancl 586 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → (𝑋 ∈ 𝐵 ↔ 𝑋:(0..^𝑁)⟶𝑆)) |
21 | 16, 20 | mpbird 256 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → 𝑋 ∈ 𝐵) |
22 | 21 | 3expia 1121 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁) → 𝑋 ∈ 𝐵)) |
23 | 9, 22 | impbid 211 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ⟶wf 6536 ‘cfv 6540 (class class class)co 7405 Fincfn 8935 0cc0 11106 ℕ0cn0 12468 ..^cfzo 13623 ♯chash 14286 Word cword 14460 Basecbs 17140 freeLMod cfrlm 21292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-sup 9433 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-fzo 13624 df-hash 14287 df-word 14461 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-hom 17217 df-cco 17218 df-0g 17383 df-prds 17389 df-pws 17391 df-sra 20777 df-rgmod 20778 df-dsmm 21278 df-frlm 21293 |
This theorem is referenced by: frlmfzoccat 41076 |
Copyright terms: Public domain | W3C validator |