Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frlmfzowrdb Structured version   Visualization version   GIF version

Theorem frlmfzowrdb 42459
Description: The vectors of a module with indices 0 to 𝑁 − 1 are the length- 𝑁 words over the scalars of the module. (Contributed by SN, 1-Sep-2023.)
Hypotheses
Ref Expression
frlmfzowrd.w 𝑊 = (𝐾 freeLMod (0..^𝑁))
frlmfzowrd.b 𝐵 = (Base‘𝑊)
frlmfzowrd.s 𝑆 = (Base‘𝐾)
Assertion
Ref Expression
frlmfzowrdb ((𝐾𝑉𝑁 ∈ ℕ0) → (𝑋𝐵 ↔ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)))

Proof of Theorem frlmfzowrdb
StepHypRef Expression
1 frlmfzowrd.w . . . . 5 𝑊 = (𝐾 freeLMod (0..^𝑁))
2 frlmfzowrd.b . . . . 5 𝐵 = (Base‘𝑊)
3 frlmfzowrd.s . . . . 5 𝑆 = (Base‘𝐾)
41, 2, 3frlmfzowrd 42457 . . . 4 (𝑋𝐵𝑋 ∈ Word 𝑆)
54a1i 11 . . 3 ((𝐾𝑉𝑁 ∈ ℕ0) → (𝑋𝐵𝑋 ∈ Word 𝑆))
61, 2, 3frlmfzolen 42458 . . . . 5 ((𝑁 ∈ ℕ0𝑋𝐵) → (♯‘𝑋) = 𝑁)
76ex 412 . . . 4 (𝑁 ∈ ℕ0 → (𝑋𝐵 → (♯‘𝑋) = 𝑁))
87adantl 481 . . 3 ((𝐾𝑉𝑁 ∈ ℕ0) → (𝑋𝐵 → (♯‘𝑋) = 𝑁))
95, 8jcad 512 . 2 ((𝐾𝑉𝑁 ∈ ℕ0) → (𝑋𝐵 → (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)))
10 simp3l 1201 . . . . . 6 ((𝐾𝑉𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → 𝑋 ∈ Word 𝑆)
11 wrdf 14540 . . . . . 6 (𝑋 ∈ Word 𝑆𝑋:(0..^(♯‘𝑋))⟶𝑆)
1210, 11syl 17 . . . . 5 ((𝐾𝑉𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → 𝑋:(0..^(♯‘𝑋))⟶𝑆)
13 simp3r 1202 . . . . . . 7 ((𝐾𝑉𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → (♯‘𝑋) = 𝑁)
1413oveq2d 7430 . . . . . 6 ((𝐾𝑉𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → (0..^(♯‘𝑋)) = (0..^𝑁))
1514feq2d 6703 . . . . 5 ((𝐾𝑉𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → (𝑋:(0..^(♯‘𝑋))⟶𝑆𝑋:(0..^𝑁)⟶𝑆))
1612, 15mpbid 232 . . . 4 ((𝐾𝑉𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → 𝑋:(0..^𝑁)⟶𝑆)
17 simp1 1136 . . . . 5 ((𝐾𝑉𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → 𝐾𝑉)
18 fzofi 13998 . . . . 5 (0..^𝑁) ∈ Fin
191, 3, 2frlmfielbas 42455 . . . . 5 ((𝐾𝑉 ∧ (0..^𝑁) ∈ Fin) → (𝑋𝐵𝑋:(0..^𝑁)⟶𝑆))
2017, 18, 19sylancl 586 . . . 4 ((𝐾𝑉𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → (𝑋𝐵𝑋:(0..^𝑁)⟶𝑆))
2116, 20mpbird 257 . . 3 ((𝐾𝑉𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → 𝑋𝐵)
22213expia 1121 . 2 ((𝐾𝑉𝑁 ∈ ℕ0) → ((𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁) → 𝑋𝐵))
239, 22impbid 212 1 ((𝐾𝑉𝑁 ∈ ℕ0) → (𝑋𝐵 ↔ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wf 6538  cfv 6542  (class class class)co 7414  Fincfn 8968  0cc0 11138  0cn0 12510  ..^cfzo 13677  chash 14352  Word cword 14535  Basecbs 17230   freeLMod cfrlm 21733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-tp 4613  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-supp 8169  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-er 8728  df-map 8851  df-ixp 8921  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-fsupp 9385  df-sup 9465  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-2 12312  df-3 12313  df-4 12314  df-5 12315  df-6 12316  df-7 12317  df-8 12318  df-9 12319  df-n0 12511  df-z 12598  df-dec 12718  df-uz 12862  df-fz 13531  df-fzo 13678  df-hash 14353  df-word 14536  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17257  df-plusg 17290  df-mulr 17291  df-sca 17293  df-vsca 17294  df-ip 17295  df-tset 17296  df-ple 17297  df-ds 17299  df-hom 17301  df-cco 17302  df-0g 17462  df-prds 17468  df-pws 17470  df-sra 21145  df-rgmod 21146  df-dsmm 21719  df-frlm 21734
This theorem is referenced by:  frlmfzoccat  42460
  Copyright terms: Public domain W3C validator