Mathbox for Steven Nguyen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frlmfzowrdb Structured version   Visualization version   GIF version

Theorem frlmfzowrdb 39593
 Description: The vectors of a module with indices 0 to 𝑁 − 1 are the length- 𝑁 words over the scalars of the module. (Contributed by SN, 1-Sep-2023.)
Hypotheses
Ref Expression
frlmfzowrd.w 𝑊 = (𝐾 freeLMod (0..^𝑁))
frlmfzowrd.b 𝐵 = (Base‘𝑊)
frlmfzowrd.s 𝑆 = (Base‘𝐾)
Assertion
Ref Expression
frlmfzowrdb ((𝐾𝑉𝑁 ∈ ℕ0) → (𝑋𝐵 ↔ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)))

Proof of Theorem frlmfzowrdb
StepHypRef Expression
1 frlmfzowrd.w . . . . 5 𝑊 = (𝐾 freeLMod (0..^𝑁))
2 frlmfzowrd.b . . . . 5 𝐵 = (Base‘𝑊)
3 frlmfzowrd.s . . . . 5 𝑆 = (Base‘𝐾)
41, 2, 3frlmfzowrd 39591 . . . 4 (𝑋𝐵𝑋 ∈ Word 𝑆)
54a1i 11 . . 3 ((𝐾𝑉𝑁 ∈ ℕ0) → (𝑋𝐵𝑋 ∈ Word 𝑆))
61, 2, 3frlmfzolen 39592 . . . . 5 ((𝑁 ∈ ℕ0𝑋𝐵) → (♯‘𝑋) = 𝑁)
76ex 416 . . . 4 (𝑁 ∈ ℕ0 → (𝑋𝐵 → (♯‘𝑋) = 𝑁))
87adantl 485 . . 3 ((𝐾𝑉𝑁 ∈ ℕ0) → (𝑋𝐵 → (♯‘𝑋) = 𝑁))
95, 8jcad 516 . 2 ((𝐾𝑉𝑁 ∈ ℕ0) → (𝑋𝐵 → (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)))
10 simp3l 1198 . . . . . 6 ((𝐾𝑉𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → 𝑋 ∈ Word 𝑆)
11 wrdf 13882 . . . . . 6 (𝑋 ∈ Word 𝑆𝑋:(0..^(♯‘𝑋))⟶𝑆)
1210, 11syl 17 . . . . 5 ((𝐾𝑉𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → 𝑋:(0..^(♯‘𝑋))⟶𝑆)
13 simp3r 1199 . . . . . . 7 ((𝐾𝑉𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → (♯‘𝑋) = 𝑁)
1413oveq2d 7161 . . . . . 6 ((𝐾𝑉𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → (0..^(♯‘𝑋)) = (0..^𝑁))
1514feq2d 6481 . . . . 5 ((𝐾𝑉𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → (𝑋:(0..^(♯‘𝑋))⟶𝑆𝑋:(0..^𝑁)⟶𝑆))
1612, 15mpbid 235 . . . 4 ((𝐾𝑉𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → 𝑋:(0..^𝑁)⟶𝑆)
17 simp1 1133 . . . . 5 ((𝐾𝑉𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → 𝐾𝑉)
18 fzofi 13357 . . . . 5 (0..^𝑁) ∈ Fin
191, 3, 2frlmfielbas 39589 . . . . 5 ((𝐾𝑉 ∧ (0..^𝑁) ∈ Fin) → (𝑋𝐵𝑋:(0..^𝑁)⟶𝑆))
2017, 18, 19sylancl 589 . . . 4 ((𝐾𝑉𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → (𝑋𝐵𝑋:(0..^𝑁)⟶𝑆))
2116, 20mpbird 260 . . 3 ((𝐾𝑉𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → 𝑋𝐵)
22213expia 1118 . 2 ((𝐾𝑉𝑁 ∈ ℕ0) → ((𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁) → 𝑋𝐵))
239, 22impbid 215 1 ((𝐾𝑉𝑁 ∈ ℕ0) → (𝑋𝐵 ↔ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ⟶wf 6328  ‘cfv 6332  (class class class)co 7145  Fincfn 8510  0cc0 10544  ℕ0cn0 11903  ..^cfzo 13048  ♯chash 13706  Word cword 13877  Basecbs 16495   freeLMod cfrlm 20457 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-1st 7684  df-2nd 7685  df-supp 7827  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-oadd 8107  df-er 8290  df-map 8409  df-ixp 8463  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-fsupp 8836  df-sup 8908  df-card 9370  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-nn 11644  df-2 11706  df-3 11707  df-4 11708  df-5 11709  df-6 11710  df-7 11711  df-8 11712  df-9 11713  df-n0 11904  df-z 11990  df-dec 12107  df-uz 12252  df-fz 12906  df-fzo 13049  df-hash 13707  df-word 13878  df-struct 16497  df-ndx 16498  df-slot 16499  df-base 16501  df-sets 16502  df-ress 16503  df-plusg 16590  df-mulr 16591  df-sca 16593  df-vsca 16594  df-ip 16595  df-tset 16596  df-ple 16597  df-ds 16599  df-hom 16601  df-cco 16602  df-0g 16727  df-prds 16733  df-pws 16735  df-sra 19958  df-rgmod 19959  df-dsmm 20443  df-frlm 20458 This theorem is referenced by:  frlmfzoccat  39594
 Copyright terms: Public domain W3C validator