![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frlmfzowrdb | Structured version Visualization version GIF version |
Description: The vectors of a module with indices 0 to 𝑁 − 1 are the length- 𝑁 words over the scalars of the module. (Contributed by SN, 1-Sep-2023.) |
Ref | Expression |
---|---|
frlmfzowrd.w | ⊢ 𝑊 = (𝐾 freeLMod (0..^𝑁)) |
frlmfzowrd.b | ⊢ 𝐵 = (Base‘𝑊) |
frlmfzowrd.s | ⊢ 𝑆 = (Base‘𝐾) |
Ref | Expression |
---|---|
frlmfzowrdb | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmfzowrd.w | . . . . 5 ⊢ 𝑊 = (𝐾 freeLMod (0..^𝑁)) | |
2 | frlmfzowrd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
3 | frlmfzowrd.s | . . . . 5 ⊢ 𝑆 = (Base‘𝐾) | |
4 | 1, 2, 3 | frlmfzowrd 42489 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ Word 𝑆) |
5 | 4 | a1i 11 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋 ∈ 𝐵 → 𝑋 ∈ Word 𝑆)) |
6 | 1, 2, 3 | frlmfzolen 42490 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (♯‘𝑋) = 𝑁) |
7 | 6 | ex 412 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑋 ∈ 𝐵 → (♯‘𝑋) = 𝑁)) |
8 | 7 | adantl 481 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋 ∈ 𝐵 → (♯‘𝑋) = 𝑁)) |
9 | 5, 8 | jcad 512 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋 ∈ 𝐵 → (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁))) |
10 | simp3l 1200 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → 𝑋 ∈ Word 𝑆) | |
11 | wrdf 14554 | . . . . . 6 ⊢ (𝑋 ∈ Word 𝑆 → 𝑋:(0..^(♯‘𝑋))⟶𝑆) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → 𝑋:(0..^(♯‘𝑋))⟶𝑆) |
13 | simp3r 1201 | . . . . . . 7 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → (♯‘𝑋) = 𝑁) | |
14 | 13 | oveq2d 7447 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → (0..^(♯‘𝑋)) = (0..^𝑁)) |
15 | 14 | feq2d 6723 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → (𝑋:(0..^(♯‘𝑋))⟶𝑆 ↔ 𝑋:(0..^𝑁)⟶𝑆)) |
16 | 12, 15 | mpbid 232 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → 𝑋:(0..^𝑁)⟶𝑆) |
17 | simp1 1135 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → 𝐾 ∈ 𝑉) | |
18 | fzofi 14012 | . . . . 5 ⊢ (0..^𝑁) ∈ Fin | |
19 | 1, 3, 2 | frlmfielbas 42487 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ (0..^𝑁) ∈ Fin) → (𝑋 ∈ 𝐵 ↔ 𝑋:(0..^𝑁)⟶𝑆)) |
20 | 17, 18, 19 | sylancl 586 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → (𝑋 ∈ 𝐵 ↔ 𝑋:(0..^𝑁)⟶𝑆)) |
21 | 16, 20 | mpbird 257 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → 𝑋 ∈ 𝐵) |
22 | 21 | 3expia 1120 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁) → 𝑋 ∈ 𝐵)) |
23 | 9, 22 | impbid 212 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 Fincfn 8984 0cc0 11153 ℕ0cn0 12524 ..^cfzo 13691 ♯chash 14366 Word cword 14549 Basecbs 17245 freeLMod cfrlm 21784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-fzo 13692 df-hash 14367 df-word 14550 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17488 df-prds 17494 df-pws 17496 df-sra 21190 df-rgmod 21191 df-dsmm 21770 df-frlm 21785 |
This theorem is referenced by: frlmfzoccat 42492 |
Copyright terms: Public domain | W3C validator |