![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frlmfzowrdb | Structured version Visualization version GIF version |
Description: The vectors of a module with indices 0 to 𝑁 − 1 are the length- 𝑁 words over the scalars of the module. (Contributed by SN, 1-Sep-2023.) |
Ref | Expression |
---|---|
frlmfzowrd.w | ⊢ 𝑊 = (𝐾 freeLMod (0..^𝑁)) |
frlmfzowrd.b | ⊢ 𝐵 = (Base‘𝑊) |
frlmfzowrd.s | ⊢ 𝑆 = (Base‘𝐾) |
Ref | Expression |
---|---|
frlmfzowrdb | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmfzowrd.w | . . . . 5 ⊢ 𝑊 = (𝐾 freeLMod (0..^𝑁)) | |
2 | frlmfzowrd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
3 | frlmfzowrd.s | . . . . 5 ⊢ 𝑆 = (Base‘𝐾) | |
4 | 1, 2, 3 | frlmfzowrd 42457 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ Word 𝑆) |
5 | 4 | a1i 11 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋 ∈ 𝐵 → 𝑋 ∈ Word 𝑆)) |
6 | 1, 2, 3 | frlmfzolen 42458 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (♯‘𝑋) = 𝑁) |
7 | 6 | ex 412 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑋 ∈ 𝐵 → (♯‘𝑋) = 𝑁)) |
8 | 7 | adantl 481 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋 ∈ 𝐵 → (♯‘𝑋) = 𝑁)) |
9 | 5, 8 | jcad 512 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋 ∈ 𝐵 → (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁))) |
10 | simp3l 1201 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → 𝑋 ∈ Word 𝑆) | |
11 | wrdf 14567 | . . . . . 6 ⊢ (𝑋 ∈ Word 𝑆 → 𝑋:(0..^(♯‘𝑋))⟶𝑆) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → 𝑋:(0..^(♯‘𝑋))⟶𝑆) |
13 | simp3r 1202 | . . . . . . 7 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → (♯‘𝑋) = 𝑁) | |
14 | 13 | oveq2d 7464 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → (0..^(♯‘𝑋)) = (0..^𝑁)) |
15 | 14 | feq2d 6733 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → (𝑋:(0..^(♯‘𝑋))⟶𝑆 ↔ 𝑋:(0..^𝑁)⟶𝑆)) |
16 | 12, 15 | mpbid 232 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → 𝑋:(0..^𝑁)⟶𝑆) |
17 | simp1 1136 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → 𝐾 ∈ 𝑉) | |
18 | fzofi 14025 | . . . . 5 ⊢ (0..^𝑁) ∈ Fin | |
19 | 1, 3, 2 | frlmfielbas 42455 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ (0..^𝑁) ∈ Fin) → (𝑋 ∈ 𝐵 ↔ 𝑋:(0..^𝑁)⟶𝑆)) |
20 | 17, 18, 19 | sylancl 585 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → (𝑋 ∈ 𝐵 ↔ 𝑋:(0..^𝑁)⟶𝑆)) |
21 | 16, 20 | mpbird 257 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → 𝑋 ∈ 𝐵) |
22 | 21 | 3expia 1121 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁) → 𝑋 ∈ 𝐵)) |
23 | 9, 22 | impbid 212 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 Fincfn 9003 0cc0 11184 ℕ0cn0 12553 ..^cfzo 13711 ♯chash 14379 Word cword 14562 Basecbs 17258 freeLMod cfrlm 21789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-fzo 13712 df-hash 14380 df-word 14563 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-hom 17335 df-cco 17336 df-0g 17501 df-prds 17507 df-pws 17509 df-sra 21195 df-rgmod 21196 df-dsmm 21775 df-frlm 21790 |
This theorem is referenced by: frlmfzoccat 42460 |
Copyright terms: Public domain | W3C validator |