![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frlmfzowrdb | Structured version Visualization version GIF version |
Description: The vectors of a module with indices 0 to 𝑁 − 1 are the length- 𝑁 words over the scalars of the module. (Contributed by SN, 1-Sep-2023.) |
Ref | Expression |
---|---|
frlmfzowrd.w | ⊢ 𝑊 = (𝐾 freeLMod (0..^𝑁)) |
frlmfzowrd.b | ⊢ 𝐵 = (Base‘𝑊) |
frlmfzowrd.s | ⊢ 𝑆 = (Base‘𝐾) |
Ref | Expression |
---|---|
frlmfzowrdb | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmfzowrd.w | . . . . 5 ⊢ 𝑊 = (𝐾 freeLMod (0..^𝑁)) | |
2 | frlmfzowrd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
3 | frlmfzowrd.s | . . . . 5 ⊢ 𝑆 = (Base‘𝐾) | |
4 | 1, 2, 3 | frlmfzowrd 41569 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ Word 𝑆) |
5 | 4 | a1i 11 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋 ∈ 𝐵 → 𝑋 ∈ Word 𝑆)) |
6 | 1, 2, 3 | frlmfzolen 41570 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (♯‘𝑋) = 𝑁) |
7 | 6 | ex 412 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑋 ∈ 𝐵 → (♯‘𝑋) = 𝑁)) |
8 | 7 | adantl 481 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋 ∈ 𝐵 → (♯‘𝑋) = 𝑁)) |
9 | 5, 8 | jcad 512 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋 ∈ 𝐵 → (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁))) |
10 | simp3l 1198 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → 𝑋 ∈ Word 𝑆) | |
11 | wrdf 14466 | . . . . . 6 ⊢ (𝑋 ∈ Word 𝑆 → 𝑋:(0..^(♯‘𝑋))⟶𝑆) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → 𝑋:(0..^(♯‘𝑋))⟶𝑆) |
13 | simp3r 1199 | . . . . . . 7 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → (♯‘𝑋) = 𝑁) | |
14 | 13 | oveq2d 7417 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → (0..^(♯‘𝑋)) = (0..^𝑁)) |
15 | 14 | feq2d 6693 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → (𝑋:(0..^(♯‘𝑋))⟶𝑆 ↔ 𝑋:(0..^𝑁)⟶𝑆)) |
16 | 12, 15 | mpbid 231 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → 𝑋:(0..^𝑁)⟶𝑆) |
17 | simp1 1133 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → 𝐾 ∈ 𝑉) | |
18 | fzofi 13936 | . . . . 5 ⊢ (0..^𝑁) ∈ Fin | |
19 | 1, 3, 2 | frlmfielbas 41567 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ (0..^𝑁) ∈ Fin) → (𝑋 ∈ 𝐵 ↔ 𝑋:(0..^𝑁)⟶𝑆)) |
20 | 17, 18, 19 | sylancl 585 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → (𝑋 ∈ 𝐵 ↔ 𝑋:(0..^𝑁)⟶𝑆)) |
21 | 16, 20 | mpbird 257 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)) → 𝑋 ∈ 𝐵) |
22 | 21 | 3expia 1118 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁) → 𝑋 ∈ 𝐵)) |
23 | 9, 22 | impbid 211 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ⟶wf 6529 ‘cfv 6533 (class class class)co 7401 Fincfn 8935 0cc0 11106 ℕ0cn0 12469 ..^cfzo 13624 ♯chash 14287 Word cword 14461 Basecbs 17143 freeLMod cfrlm 21609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-map 8818 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-sup 9433 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-z 12556 df-dec 12675 df-uz 12820 df-fz 13482 df-fzo 13625 df-hash 14288 df-word 14462 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17386 df-prds 17392 df-pws 17394 df-sra 21011 df-rgmod 21012 df-dsmm 21595 df-frlm 21610 |
This theorem is referenced by: frlmfzoccat 41572 |
Copyright terms: Public domain | W3C validator |