![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frlmfzoccat | Structured version Visualization version GIF version |
Description: The concatenation of two vectors of dimension 𝑁 and 𝑀 forms a vector of dimension 𝑁 + 𝑀. (Contributed by SN, 31-Aug-2023.) |
Ref | Expression |
---|---|
frlmfzoccat.w | ⊢ 𝑊 = (𝐾 freeLMod (0..^𝐿)) |
frlmfzoccat.x | ⊢ 𝑋 = (𝐾 freeLMod (0..^𝑀)) |
frlmfzoccat.y | ⊢ 𝑌 = (𝐾 freeLMod (0..^𝑁)) |
frlmfzoccat.b | ⊢ 𝐵 = (Base‘𝑊) |
frlmfzoccat.c | ⊢ 𝐶 = (Base‘𝑋) |
frlmfzoccat.d | ⊢ 𝐷 = (Base‘𝑌) |
frlmfzoccat.k | ⊢ (𝜑 → 𝐾 ∈ 𝑍) |
frlmfzoccat.l | ⊢ (𝜑 → (𝑀 + 𝑁) = 𝐿) |
frlmfzoccat.m | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
frlmfzoccat.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
frlmfzoccat.u | ⊢ (𝜑 → 𝑈 ∈ 𝐶) |
frlmfzoccat.v | ⊢ (𝜑 → 𝑉 ∈ 𝐷) |
Ref | Expression |
---|---|
frlmfzoccat | ⊢ (𝜑 → (𝑈 ++ 𝑉) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmfzoccat.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝐶) | |
2 | frlmfzoccat.x | . . . . 5 ⊢ 𝑋 = (𝐾 freeLMod (0..^𝑀)) | |
3 | frlmfzoccat.c | . . . . 5 ⊢ 𝐶 = (Base‘𝑋) | |
4 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
5 | 2, 3, 4 | frlmfzowrd 41383 | . . . 4 ⊢ (𝑈 ∈ 𝐶 → 𝑈 ∈ Word (Base‘𝐾)) |
6 | 1, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝑈 ∈ Word (Base‘𝐾)) |
7 | frlmfzoccat.v | . . . 4 ⊢ (𝜑 → 𝑉 ∈ 𝐷) | |
8 | frlmfzoccat.y | . . . . 5 ⊢ 𝑌 = (𝐾 freeLMod (0..^𝑁)) | |
9 | frlmfzoccat.d | . . . . 5 ⊢ 𝐷 = (Base‘𝑌) | |
10 | 8, 9, 4 | frlmfzowrd 41383 | . . . 4 ⊢ (𝑉 ∈ 𝐷 → 𝑉 ∈ Word (Base‘𝐾)) |
11 | 7, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝑉 ∈ Word (Base‘𝐾)) |
12 | ccatcl 14529 | . . 3 ⊢ ((𝑈 ∈ Word (Base‘𝐾) ∧ 𝑉 ∈ Word (Base‘𝐾)) → (𝑈 ++ 𝑉) ∈ Word (Base‘𝐾)) | |
13 | 6, 11, 12 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑈 ++ 𝑉) ∈ Word (Base‘𝐾)) |
14 | ccatlen 14530 | . . . 4 ⊢ ((𝑈 ∈ Word (Base‘𝐾) ∧ 𝑉 ∈ Word (Base‘𝐾)) → (♯‘(𝑈 ++ 𝑉)) = ((♯‘𝑈) + (♯‘𝑉))) | |
15 | 6, 11, 14 | syl2anc 583 | . . 3 ⊢ (𝜑 → (♯‘(𝑈 ++ 𝑉)) = ((♯‘𝑈) + (♯‘𝑉))) |
16 | frlmfzoccat.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
17 | ovexd 7447 | . . . . . 6 ⊢ (𝜑 → (0..^𝑀) ∈ V) | |
18 | 2, 4, 3 | frlmbasf 21535 | . . . . . 6 ⊢ (((0..^𝑀) ∈ V ∧ 𝑈 ∈ 𝐶) → 𝑈:(0..^𝑀)⟶(Base‘𝐾)) |
19 | 17, 1, 18 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝑈:(0..^𝑀)⟶(Base‘𝐾)) |
20 | fnfzo0hash 14414 | . . . . 5 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑈:(0..^𝑀)⟶(Base‘𝐾)) → (♯‘𝑈) = 𝑀) | |
21 | 16, 19, 20 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (♯‘𝑈) = 𝑀) |
22 | frlmfzoccat.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
23 | ovexd 7447 | . . . . . 6 ⊢ (𝜑 → (0..^𝑁) ∈ V) | |
24 | 8, 4, 9 | frlmbasf 21535 | . . . . . 6 ⊢ (((0..^𝑁) ∈ V ∧ 𝑉 ∈ 𝐷) → 𝑉:(0..^𝑁)⟶(Base‘𝐾)) |
25 | 23, 7, 24 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝑉:(0..^𝑁)⟶(Base‘𝐾)) |
26 | fnfzo0hash 14414 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑉:(0..^𝑁)⟶(Base‘𝐾)) → (♯‘𝑉) = 𝑁) | |
27 | 22, 25, 26 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (♯‘𝑉) = 𝑁) |
28 | 21, 27 | oveq12d 7430 | . . 3 ⊢ (𝜑 → ((♯‘𝑈) + (♯‘𝑉)) = (𝑀 + 𝑁)) |
29 | frlmfzoccat.l | . . 3 ⊢ (𝜑 → (𝑀 + 𝑁) = 𝐿) | |
30 | 15, 28, 29 | 3eqtrd 2775 | . 2 ⊢ (𝜑 → (♯‘(𝑈 ++ 𝑉)) = 𝐿) |
31 | frlmfzoccat.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑍) | |
32 | 16, 22 | nn0addcld 12541 | . . . 4 ⊢ (𝜑 → (𝑀 + 𝑁) ∈ ℕ0) |
33 | 29, 32 | eqeltrrd 2833 | . . 3 ⊢ (𝜑 → 𝐿 ∈ ℕ0) |
34 | frlmfzoccat.w | . . . 4 ⊢ 𝑊 = (𝐾 freeLMod (0..^𝐿)) | |
35 | frlmfzoccat.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
36 | 34, 35, 4 | frlmfzowrdb 41385 | . . 3 ⊢ ((𝐾 ∈ 𝑍 ∧ 𝐿 ∈ ℕ0) → ((𝑈 ++ 𝑉) ∈ 𝐵 ↔ ((𝑈 ++ 𝑉) ∈ Word (Base‘𝐾) ∧ (♯‘(𝑈 ++ 𝑉)) = 𝐿))) |
37 | 31, 33, 36 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝑈 ++ 𝑉) ∈ 𝐵 ↔ ((𝑈 ++ 𝑉) ∈ Word (Base‘𝐾) ∧ (♯‘(𝑈 ++ 𝑉)) = 𝐿))) |
38 | 13, 30, 37 | mpbir2and 710 | 1 ⊢ (𝜑 → (𝑈 ++ 𝑉) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ⟶wf 6540 ‘cfv 6544 (class class class)co 7412 0cc0 11113 + caddc 11116 ℕ0cn0 12477 ..^cfzo 13632 ♯chash 14295 Word cword 14469 ++ cconcat 14525 Basecbs 17149 freeLMod cfrlm 21521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-supp 8150 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-map 8825 df-ixp 8895 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-fsupp 9365 df-sup 9440 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-fz 13490 df-fzo 13633 df-hash 14296 df-word 14470 df-concat 14526 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-hom 17226 df-cco 17227 df-0g 17392 df-prds 17398 df-pws 17400 df-sra 20931 df-rgmod 20932 df-dsmm 21507 df-frlm 21522 |
This theorem is referenced by: frlmvscadiccat 41387 |
Copyright terms: Public domain | W3C validator |