Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frlmfzoccat Structured version   Visualization version   GIF version

Theorem frlmfzoccat 42493
Description: The concatenation of two vectors of dimension 𝑁 and 𝑀 forms a vector of dimension 𝑁 + 𝑀. (Contributed by SN, 31-Aug-2023.)
Hypotheses
Ref Expression
frlmfzoccat.w 𝑊 = (𝐾 freeLMod (0..^𝐿))
frlmfzoccat.x 𝑋 = (𝐾 freeLMod (0..^𝑀))
frlmfzoccat.y 𝑌 = (𝐾 freeLMod (0..^𝑁))
frlmfzoccat.b 𝐵 = (Base‘𝑊)
frlmfzoccat.c 𝐶 = (Base‘𝑋)
frlmfzoccat.d 𝐷 = (Base‘𝑌)
frlmfzoccat.k (𝜑𝐾𝑍)
frlmfzoccat.l (𝜑 → (𝑀 + 𝑁) = 𝐿)
frlmfzoccat.m (𝜑𝑀 ∈ ℕ0)
frlmfzoccat.n (𝜑𝑁 ∈ ℕ0)
frlmfzoccat.u (𝜑𝑈𝐶)
frlmfzoccat.v (𝜑𝑉𝐷)
Assertion
Ref Expression
frlmfzoccat (𝜑 → (𝑈 ++ 𝑉) ∈ 𝐵)

Proof of Theorem frlmfzoccat
StepHypRef Expression
1 frlmfzoccat.u . . . 4 (𝜑𝑈𝐶)
2 frlmfzoccat.x . . . . 5 𝑋 = (𝐾 freeLMod (0..^𝑀))
3 frlmfzoccat.c . . . . 5 𝐶 = (Base‘𝑋)
4 eqid 2729 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
52, 3, 4frlmfzowrd 42490 . . . 4 (𝑈𝐶𝑈 ∈ Word (Base‘𝐾))
61, 5syl 17 . . 3 (𝜑𝑈 ∈ Word (Base‘𝐾))
7 frlmfzoccat.v . . . 4 (𝜑𝑉𝐷)
8 frlmfzoccat.y . . . . 5 𝑌 = (𝐾 freeLMod (0..^𝑁))
9 frlmfzoccat.d . . . . 5 𝐷 = (Base‘𝑌)
108, 9, 4frlmfzowrd 42490 . . . 4 (𝑉𝐷𝑉 ∈ Word (Base‘𝐾))
117, 10syl 17 . . 3 (𝜑𝑉 ∈ Word (Base‘𝐾))
12 ccatcl 14539 . . 3 ((𝑈 ∈ Word (Base‘𝐾) ∧ 𝑉 ∈ Word (Base‘𝐾)) → (𝑈 ++ 𝑉) ∈ Word (Base‘𝐾))
136, 11, 12syl2anc 584 . 2 (𝜑 → (𝑈 ++ 𝑉) ∈ Word (Base‘𝐾))
14 ccatlen 14540 . . . 4 ((𝑈 ∈ Word (Base‘𝐾) ∧ 𝑉 ∈ Word (Base‘𝐾)) → (♯‘(𝑈 ++ 𝑉)) = ((♯‘𝑈) + (♯‘𝑉)))
156, 11, 14syl2anc 584 . . 3 (𝜑 → (♯‘(𝑈 ++ 𝑉)) = ((♯‘𝑈) + (♯‘𝑉)))
16 frlmfzoccat.m . . . . 5 (𝜑𝑀 ∈ ℕ0)
17 ovexd 7422 . . . . . 6 (𝜑 → (0..^𝑀) ∈ V)
182, 4, 3frlmbasf 21669 . . . . . 6 (((0..^𝑀) ∈ V ∧ 𝑈𝐶) → 𝑈:(0..^𝑀)⟶(Base‘𝐾))
1917, 1, 18syl2anc 584 . . . . 5 (𝜑𝑈:(0..^𝑀)⟶(Base‘𝐾))
20 fnfzo0hash 14415 . . . . 5 ((𝑀 ∈ ℕ0𝑈:(0..^𝑀)⟶(Base‘𝐾)) → (♯‘𝑈) = 𝑀)
2116, 19, 20syl2anc 584 . . . 4 (𝜑 → (♯‘𝑈) = 𝑀)
22 frlmfzoccat.n . . . . 5 (𝜑𝑁 ∈ ℕ0)
23 ovexd 7422 . . . . . 6 (𝜑 → (0..^𝑁) ∈ V)
248, 4, 9frlmbasf 21669 . . . . . 6 (((0..^𝑁) ∈ V ∧ 𝑉𝐷) → 𝑉:(0..^𝑁)⟶(Base‘𝐾))
2523, 7, 24syl2anc 584 . . . . 5 (𝜑𝑉:(0..^𝑁)⟶(Base‘𝐾))
26 fnfzo0hash 14415 . . . . 5 ((𝑁 ∈ ℕ0𝑉:(0..^𝑁)⟶(Base‘𝐾)) → (♯‘𝑉) = 𝑁)
2722, 25, 26syl2anc 584 . . . 4 (𝜑 → (♯‘𝑉) = 𝑁)
2821, 27oveq12d 7405 . . 3 (𝜑 → ((♯‘𝑈) + (♯‘𝑉)) = (𝑀 + 𝑁))
29 frlmfzoccat.l . . 3 (𝜑 → (𝑀 + 𝑁) = 𝐿)
3015, 28, 293eqtrd 2768 . 2 (𝜑 → (♯‘(𝑈 ++ 𝑉)) = 𝐿)
31 frlmfzoccat.k . . 3 (𝜑𝐾𝑍)
3216, 22nn0addcld 12507 . . . 4 (𝜑 → (𝑀 + 𝑁) ∈ ℕ0)
3329, 32eqeltrrd 2829 . . 3 (𝜑𝐿 ∈ ℕ0)
34 frlmfzoccat.w . . . 4 𝑊 = (𝐾 freeLMod (0..^𝐿))
35 frlmfzoccat.b . . . 4 𝐵 = (Base‘𝑊)
3634, 35, 4frlmfzowrdb 42492 . . 3 ((𝐾𝑍𝐿 ∈ ℕ0) → ((𝑈 ++ 𝑉) ∈ 𝐵 ↔ ((𝑈 ++ 𝑉) ∈ Word (Base‘𝐾) ∧ (♯‘(𝑈 ++ 𝑉)) = 𝐿)))
3731, 33, 36syl2anc 584 . 2 (𝜑 → ((𝑈 ++ 𝑉) ∈ 𝐵 ↔ ((𝑈 ++ 𝑉) ∈ Word (Base‘𝐾) ∧ (♯‘(𝑈 ++ 𝑉)) = 𝐿)))
3813, 30, 37mpbir2and 713 1 (𝜑 → (𝑈 ++ 𝑉) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  wf 6507  cfv 6511  (class class class)co 7387  0cc0 11068   + caddc 11071  0cn0 12442  ..^cfzo 13615  chash 14295  Word cword 14478   ++ cconcat 14535  Basecbs 17179   freeLMod cfrlm 21655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-concat 14536  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-prds 17410  df-pws 17412  df-sra 21080  df-rgmod 21081  df-dsmm 21641  df-frlm 21656
This theorem is referenced by:  frlmvscadiccat  42494
  Copyright terms: Public domain W3C validator