Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frlmfzoccat | Structured version Visualization version GIF version |
Description: The concatenation of two vectors of dimension 𝑁 and 𝑀 forms a vector of dimension 𝑁 + 𝑀. (Contributed by SN, 31-Aug-2023.) |
Ref | Expression |
---|---|
frlmfzoccat.w | ⊢ 𝑊 = (𝐾 freeLMod (0..^𝐿)) |
frlmfzoccat.x | ⊢ 𝑋 = (𝐾 freeLMod (0..^𝑀)) |
frlmfzoccat.y | ⊢ 𝑌 = (𝐾 freeLMod (0..^𝑁)) |
frlmfzoccat.b | ⊢ 𝐵 = (Base‘𝑊) |
frlmfzoccat.c | ⊢ 𝐶 = (Base‘𝑋) |
frlmfzoccat.d | ⊢ 𝐷 = (Base‘𝑌) |
frlmfzoccat.k | ⊢ (𝜑 → 𝐾 ∈ 𝑍) |
frlmfzoccat.l | ⊢ (𝜑 → (𝑀 + 𝑁) = 𝐿) |
frlmfzoccat.m | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
frlmfzoccat.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
frlmfzoccat.u | ⊢ (𝜑 → 𝑈 ∈ 𝐶) |
frlmfzoccat.v | ⊢ (𝜑 → 𝑉 ∈ 𝐷) |
Ref | Expression |
---|---|
frlmfzoccat | ⊢ (𝜑 → (𝑈 ++ 𝑉) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmfzoccat.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝐶) | |
2 | frlmfzoccat.x | . . . . 5 ⊢ 𝑋 = (𝐾 freeLMod (0..^𝑀)) | |
3 | frlmfzoccat.c | . . . . 5 ⊢ 𝐶 = (Base‘𝑋) | |
4 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
5 | 2, 3, 4 | frlmfzowrd 40159 | . . . 4 ⊢ (𝑈 ∈ 𝐶 → 𝑈 ∈ Word (Base‘𝐾)) |
6 | 1, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝑈 ∈ Word (Base‘𝐾)) |
7 | frlmfzoccat.v | . . . 4 ⊢ (𝜑 → 𝑉 ∈ 𝐷) | |
8 | frlmfzoccat.y | . . . . 5 ⊢ 𝑌 = (𝐾 freeLMod (0..^𝑁)) | |
9 | frlmfzoccat.d | . . . . 5 ⊢ 𝐷 = (Base‘𝑌) | |
10 | 8, 9, 4 | frlmfzowrd 40159 | . . . 4 ⊢ (𝑉 ∈ 𝐷 → 𝑉 ∈ Word (Base‘𝐾)) |
11 | 7, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝑉 ∈ Word (Base‘𝐾)) |
12 | ccatcl 14205 | . . 3 ⊢ ((𝑈 ∈ Word (Base‘𝐾) ∧ 𝑉 ∈ Word (Base‘𝐾)) → (𝑈 ++ 𝑉) ∈ Word (Base‘𝐾)) | |
13 | 6, 11, 12 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑈 ++ 𝑉) ∈ Word (Base‘𝐾)) |
14 | ccatlen 14206 | . . . 4 ⊢ ((𝑈 ∈ Word (Base‘𝐾) ∧ 𝑉 ∈ Word (Base‘𝐾)) → (♯‘(𝑈 ++ 𝑉)) = ((♯‘𝑈) + (♯‘𝑉))) | |
15 | 6, 11, 14 | syl2anc 583 | . . 3 ⊢ (𝜑 → (♯‘(𝑈 ++ 𝑉)) = ((♯‘𝑈) + (♯‘𝑉))) |
16 | frlmfzoccat.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
17 | ovexd 7290 | . . . . . 6 ⊢ (𝜑 → (0..^𝑀) ∈ V) | |
18 | 2, 4, 3 | frlmbasf 20877 | . . . . . 6 ⊢ (((0..^𝑀) ∈ V ∧ 𝑈 ∈ 𝐶) → 𝑈:(0..^𝑀)⟶(Base‘𝐾)) |
19 | 17, 1, 18 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝑈:(0..^𝑀)⟶(Base‘𝐾)) |
20 | fnfzo0hash 14090 | . . . . 5 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑈:(0..^𝑀)⟶(Base‘𝐾)) → (♯‘𝑈) = 𝑀) | |
21 | 16, 19, 20 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (♯‘𝑈) = 𝑀) |
22 | frlmfzoccat.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
23 | ovexd 7290 | . . . . . 6 ⊢ (𝜑 → (0..^𝑁) ∈ V) | |
24 | 8, 4, 9 | frlmbasf 20877 | . . . . . 6 ⊢ (((0..^𝑁) ∈ V ∧ 𝑉 ∈ 𝐷) → 𝑉:(0..^𝑁)⟶(Base‘𝐾)) |
25 | 23, 7, 24 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝑉:(0..^𝑁)⟶(Base‘𝐾)) |
26 | fnfzo0hash 14090 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑉:(0..^𝑁)⟶(Base‘𝐾)) → (♯‘𝑉) = 𝑁) | |
27 | 22, 25, 26 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (♯‘𝑉) = 𝑁) |
28 | 21, 27 | oveq12d 7273 | . . 3 ⊢ (𝜑 → ((♯‘𝑈) + (♯‘𝑉)) = (𝑀 + 𝑁)) |
29 | frlmfzoccat.l | . . 3 ⊢ (𝜑 → (𝑀 + 𝑁) = 𝐿) | |
30 | 15, 28, 29 | 3eqtrd 2782 | . 2 ⊢ (𝜑 → (♯‘(𝑈 ++ 𝑉)) = 𝐿) |
31 | frlmfzoccat.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑍) | |
32 | 16, 22 | nn0addcld 12227 | . . . 4 ⊢ (𝜑 → (𝑀 + 𝑁) ∈ ℕ0) |
33 | 29, 32 | eqeltrrd 2840 | . . 3 ⊢ (𝜑 → 𝐿 ∈ ℕ0) |
34 | frlmfzoccat.w | . . . 4 ⊢ 𝑊 = (𝐾 freeLMod (0..^𝐿)) | |
35 | frlmfzoccat.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
36 | 34, 35, 4 | frlmfzowrdb 40161 | . . 3 ⊢ ((𝐾 ∈ 𝑍 ∧ 𝐿 ∈ ℕ0) → ((𝑈 ++ 𝑉) ∈ 𝐵 ↔ ((𝑈 ++ 𝑉) ∈ Word (Base‘𝐾) ∧ (♯‘(𝑈 ++ 𝑉)) = 𝐿))) |
37 | 31, 33, 36 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝑈 ++ 𝑉) ∈ 𝐵 ↔ ((𝑈 ++ 𝑉) ∈ Word (Base‘𝐾) ∧ (♯‘(𝑈 ++ 𝑉)) = 𝐿))) |
38 | 13, 30, 37 | mpbir2and 709 | 1 ⊢ (𝜑 → (𝑈 ++ 𝑉) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 0cc0 10802 + caddc 10805 ℕ0cn0 12163 ..^cfzo 13311 ♯chash 13972 Word cword 14145 ++ cconcat 14201 Basecbs 16840 freeLMod cfrlm 20863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-concat 14202 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-0g 17069 df-prds 17075 df-pws 17077 df-sra 20349 df-rgmod 20350 df-dsmm 20849 df-frlm 20864 |
This theorem is referenced by: frlmvscadiccat 40163 |
Copyright terms: Public domain | W3C validator |