MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumge1 Structured version   Visualization version   GIF version

Theorem fsumge1 15830
Description: A sum of nonnegative numbers is greater than or equal to any one of its terms. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 4-Jun-2014.)
Hypotheses
Ref Expression
fsumge0.1 (𝜑𝐴 ∈ Fin)
fsumge0.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fsumge0.3 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
fsumge1.4 (𝑘 = 𝑀𝐵 = 𝐶)
fsumge1.5 (𝜑𝑀𝐴)
Assertion
Ref Expression
fsumge1 (𝜑𝐶 ≤ Σ𝑘𝐴 𝐵)
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘   𝑘,𝑀   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumge1
StepHypRef Expression
1 fsumge1.5 . . 3 (𝜑𝑀𝐴)
2 fsumge1.4 . . . . 5 (𝑘 = 𝑀𝐵 = 𝐶)
32eleq1d 2824 . . . 4 (𝑘 = 𝑀 → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ))
4 fsumge0.2 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
54recnd 11287 . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
65ralrimiva 3144 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
73, 6, 1rspcdva 3623 . . 3 (𝜑𝐶 ∈ ℂ)
82sumsn 15779 . . 3 ((𝑀𝐴𝐶 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐵 = 𝐶)
91, 7, 8syl2anc 584 . 2 (𝜑 → Σ𝑘 ∈ {𝑀}𝐵 = 𝐶)
10 fsumge0.1 . . 3 (𝜑𝐴 ∈ Fin)
11 fsumge0.3 . . 3 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
121snssd 4814 . . 3 (𝜑 → {𝑀} ⊆ 𝐴)
1310, 4, 11, 12fsumless 15829 . 2 (𝜑 → Σ𝑘 ∈ {𝑀}𝐵 ≤ Σ𝑘𝐴 𝐵)
149, 13eqbrtrrd 5172 1 (𝜑𝐶 ≤ Σ𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  {csn 4631   class class class wbr 5148  Fincfn 8984  cc 11151  cr 11152  0cc0 11153  cle 11294  Σcsu 15719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-ico 13390  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720
This theorem is referenced by:  lebnumlem1  25007  rrxdstprj1  25457  fsumub  32835  eulerpartlemgc  34344  eulerpartlemb  34350  rrndstprj1  37817  dvnprodlem1  45902
  Copyright terms: Public domain W3C validator