MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumsn Structured version   Visualization version   GIF version

Theorem sumsn 14852
Description: A sum of a singleton is the term. (Contributed by Mario Carneiro, 22-Apr-2014.)
Hypothesis
Ref Expression
fsum1.1 (𝑘 = 𝑀𝐴 = 𝐵)
Assertion
Ref Expression
sumsn ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
Distinct variable groups:   𝐵,𝑘   𝑘,𝑀   𝑘,𝑉
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem sumsn
StepHypRef Expression
1 nfcv 2969 . 2 𝑘𝐵
2 fsum1.1 . 2 (𝑘 = 𝑀𝐴 = 𝐵)
31, 2sumsnf 14850 1 ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  {csn 4397  cc 10250  Σcsu 14793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-sup 8617  df-oi 8684  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-n0 11619  df-z 11705  df-uz 11969  df-rp 12113  df-fz 12620  df-fzo 12761  df-seq 13096  df-exp 13155  df-hash 13411  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-clim 14596  df-sum 14794
This theorem is referenced by:  fsum1  14853  sumpr  14854  sumtp  14855  sumsns  14856  fsumm1  14857  fsum1p  14859  fsum2dlem  14876  fsumge1  14903  fsumrlim  14917  fsumo1  14918  fsumiun  14927  incexclem  14942  incexc  14943  binomfallfac  15144  fprodefsum  15197  rpnnen2lem11  15327  bitsinv1  15537  2ebits  15542  bitsinvp1  15544  ehl1eudis  23588  ovolfiniun  23667  volfiniun  23713  itg11  23857  itgfsum  23992  plyeq0lem  24365  coemulhi  24409  vieta1lem2  24465  vieta1  24466  chtprm  25292  musumsum  25331  muinv  25332  logexprlim  25363  perfectlem2  25368  dchrhash  25409  rpvmasum2  25614  eulerpartlems  30956  eulerpartlemgc  30958  plymulx0  31160  signsplypnf  31163  reprinfz1  31238  breprexp  31249  circlemeth  31256  ismrer1  34172  jm2.23  38399  k0004val0  39285  dvnprodlem3  40951  stoweidlem17  41021  stoweidlem44  41048  sge0cl  41382  carageniuncllem1  41522  perfectALTVlem2  42454  nnsum3primesprm  42501  nn0sumshdiglemB  43254  nn0sumshdiglem1  43255  nn0sumshdiglem2  43256
  Copyright terms: Public domain W3C validator