| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sumsn | Structured version Visualization version GIF version | ||
| Description: A sum of a singleton is the term. (Contributed by Mario Carneiro, 22-Apr-2014.) |
| Ref | Expression |
|---|---|
| fsum1.1 | ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sumsn | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2895 | . 2 ⊢ Ⅎ𝑘𝐵 | |
| 2 | fsum1.1 | . 2 ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) | |
| 3 | 1, 2 | sumsnf 15654 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {csn 4577 ℂcc 11013 Σcsu 15597 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-z 12478 df-uz 12741 df-rp 12895 df-fz 13412 df-fzo 13559 df-seq 13913 df-exp 13973 df-hash 14242 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-clim 15399 df-sum 15598 |
| This theorem is referenced by: fsum1 15658 sumpr 15659 sumtp 15660 sumsns 15661 fsumm1 15662 fsum1p 15664 fsum2dlem 15681 fsumge1 15708 fsumrlim 15722 fsumo1 15723 fsumiun 15732 incexclem 15747 incexc 15748 binomfallfac 15952 fprodefsum 16006 rpnnen2lem11 16137 bitsinv1 16357 2ebits 16362 bitsinvp1 16364 ehl1eudis 25350 ovolfiniun 25432 volfiniun 25478 itg11 25622 itgfsum 25758 plyeq0lem 26145 coemulhi 26189 vieta1lem2 26249 vieta1 26250 chtprm 27093 musumsum 27132 muinv 27133 logexprlim 27166 perfectlem2 27171 dchrhash 27212 rpvmasum2 27453 eulerpartlems 34396 eulerpartlemgc 34398 plymulx0 34583 signsplypnf 34586 reprinfz1 34658 breprexp 34669 circlemeth 34676 ismrer1 37901 sticksstones9 42270 sticksstones11 42272 jm2.23 43116 k0004val0 44274 dvnprodlem3 46073 stoweidlem17 46142 stoweidlem44 46169 sge0cl 46506 carageniuncllem1 46646 perfectALTVlem2 47849 nnsum3primesprm 47917 nn0sumshdiglemB 48748 nn0sumshdiglem1 48749 nn0sumshdiglem2 48750 |
| Copyright terms: Public domain | W3C validator |