![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sumsn | Structured version Visualization version GIF version |
Description: A sum of a singleton is the term. (Contributed by Mario Carneiro, 22-Apr-2014.) |
Ref | Expression |
---|---|
fsum1.1 | ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
sumsn | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2892 | . 2 ⊢ Ⅎ𝑘𝐵 | |
2 | fsum1.1 | . 2 ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) | |
3 | 1, 2 | sumsnf 15740 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {csn 4624 ℂcc 11145 Σcsu 15683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 ax-inf2 9675 ax-cnex 11203 ax-resscn 11204 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-addrcl 11208 ax-mulcl 11209 ax-mulrcl 11210 ax-mulcom 11211 ax-addass 11212 ax-mulass 11213 ax-distr 11214 ax-i2m1 11215 ax-1ne0 11216 ax-1rid 11217 ax-rnegex 11218 ax-rrecex 11219 ax-cnre 11220 ax-pre-lttri 11221 ax-pre-lttrn 11222 ax-pre-ltadd 11223 ax-pre-mulgt0 11224 ax-pre-sup 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-int 4948 df-iun 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6303 df-ord 6369 df-on 6370 df-lim 6371 df-suc 6372 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9476 df-oi 9544 df-card 9973 df-pnf 11289 df-mnf 11290 df-xr 11291 df-ltxr 11292 df-le 11293 df-sub 11485 df-neg 11486 df-div 11911 df-nn 12257 df-2 12319 df-3 12320 df-n0 12517 df-z 12603 df-uz 12867 df-rp 13021 df-fz 13531 df-fzo 13674 df-seq 14014 df-exp 14074 df-hash 14341 df-cj 15097 df-re 15098 df-im 15099 df-sqrt 15233 df-abs 15234 df-clim 15483 df-sum 15684 |
This theorem is referenced by: fsum1 15744 sumpr 15745 sumtp 15746 sumsns 15747 fsumm1 15748 fsum1p 15750 fsum2dlem 15767 fsumge1 15794 fsumrlim 15808 fsumo1 15809 fsumiun 15818 incexclem 15833 incexc 15834 binomfallfac 16036 fprodefsum 16090 rpnnen2lem11 16219 bitsinv1 16435 2ebits 16440 bitsinvp1 16442 ehl1eudis 25434 ovolfiniun 25516 volfiniun 25562 itg11 25706 itgfsum 25842 plyeq0lem 26232 coemulhi 26276 vieta1lem2 26334 vieta1 26335 chtprm 27176 musumsum 27215 muinv 27216 logexprlim 27249 perfectlem2 27254 dchrhash 27295 rpvmasum2 27536 eulerpartlems 34205 eulerpartlemgc 34207 plymulx0 34404 signsplypnf 34407 reprinfz1 34479 breprexp 34490 circlemeth 34497 ismrer1 37550 sticksstones9 41864 sticksstones11 41866 jm2.23 42689 k0004val0 43856 dvnprodlem3 45603 stoweidlem17 45672 stoweidlem44 45699 sge0cl 46036 carageniuncllem1 46176 perfectALTVlem2 47328 nnsum3primesprm 47396 nn0sumshdiglemB 48042 nn0sumshdiglem1 48043 nn0sumshdiglem2 48044 |
Copyright terms: Public domain | W3C validator |