| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sumsn | Structured version Visualization version GIF version | ||
| Description: A sum of a singleton is the term. (Contributed by Mario Carneiro, 22-Apr-2014.) |
| Ref | Expression |
|---|---|
| fsum1.1 | ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sumsn | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2905 | . 2 ⊢ Ⅎ𝑘𝐵 | |
| 2 | fsum1.1 | . 2 ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) | |
| 3 | 1, 2 | sumsnf 15779 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {csn 4626 ℂcc 11153 Σcsu 15722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-fz 13548 df-fzo 13695 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-sum 15723 |
| This theorem is referenced by: fsum1 15783 sumpr 15784 sumtp 15785 sumsns 15786 fsumm1 15787 fsum1p 15789 fsum2dlem 15806 fsumge1 15833 fsumrlim 15847 fsumo1 15848 fsumiun 15857 incexclem 15872 incexc 15873 binomfallfac 16077 fprodefsum 16131 rpnnen2lem11 16260 bitsinv1 16479 2ebits 16484 bitsinvp1 16486 ehl1eudis 25454 ovolfiniun 25536 volfiniun 25582 itg11 25726 itgfsum 25862 plyeq0lem 26249 coemulhi 26293 vieta1lem2 26353 vieta1 26354 chtprm 27196 musumsum 27235 muinv 27236 logexprlim 27269 perfectlem2 27274 dchrhash 27315 rpvmasum2 27556 eulerpartlems 34362 eulerpartlemgc 34364 plymulx0 34562 signsplypnf 34565 reprinfz1 34637 breprexp 34648 circlemeth 34655 ismrer1 37845 sticksstones9 42155 sticksstones11 42157 jm2.23 43008 k0004val0 44167 dvnprodlem3 45963 stoweidlem17 46032 stoweidlem44 46059 sge0cl 46396 carageniuncllem1 46536 perfectALTVlem2 47709 nnsum3primesprm 47777 nn0sumshdiglemB 48541 nn0sumshdiglem1 48542 nn0sumshdiglem2 48543 |
| Copyright terms: Public domain | W3C validator |