MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumsn Structured version   Visualization version   GIF version

Theorem sumsn 15653
Description: A sum of a singleton is the term. (Contributed by Mario Carneiro, 22-Apr-2014.)
Hypothesis
Ref Expression
fsum1.1 (𝑘 = 𝑀𝐴 = 𝐵)
Assertion
Ref Expression
sumsn ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
Distinct variable groups:   𝐵,𝑘   𝑘,𝑀   𝑘,𝑉
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem sumsn
StepHypRef Expression
1 nfcv 2894 . 2 𝑘𝐵
2 fsum1.1 . 2 (𝑘 = 𝑀𝐴 = 𝐵)
31, 2sumsnf 15650 1 ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {csn 4576  cc 11004  Σcsu 15593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594
This theorem is referenced by:  fsum1  15654  sumpr  15655  sumtp  15656  sumsns  15657  fsumm1  15658  fsum1p  15660  fsum2dlem  15677  fsumge1  15704  fsumrlim  15718  fsumo1  15719  fsumiun  15728  incexclem  15743  incexc  15744  binomfallfac  15948  fprodefsum  16002  rpnnen2lem11  16133  bitsinv1  16353  2ebits  16358  bitsinvp1  16360  ehl1eudis  25348  ovolfiniun  25430  volfiniun  25476  itg11  25620  itgfsum  25756  plyeq0lem  26143  coemulhi  26187  vieta1lem2  26247  vieta1  26248  chtprm  27091  musumsum  27130  muinv  27131  logexprlim  27164  perfectlem2  27169  dchrhash  27210  rpvmasum2  27451  eulerpartlems  34371  eulerpartlemgc  34373  plymulx0  34558  signsplypnf  34561  reprinfz1  34633  breprexp  34644  circlemeth  34651  ismrer1  37884  sticksstones9  42193  sticksstones11  42195  jm2.23  43035  k0004val0  44193  dvnprodlem3  45992  stoweidlem17  46061  stoweidlem44  46088  sge0cl  46425  carageniuncllem1  46565  perfectALTVlem2  47759  nnsum3primesprm  47827  nn0sumshdiglemB  48658  nn0sumshdiglem1  48659  nn0sumshdiglem2  48660
  Copyright terms: Public domain W3C validator