MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumsn Structured version   Visualization version   GIF version

Theorem sumsn 15657
Description: A sum of a singleton is the term. (Contributed by Mario Carneiro, 22-Apr-2014.)
Hypothesis
Ref Expression
fsum1.1 (𝑘 = 𝑀𝐴 = 𝐵)
Assertion
Ref Expression
sumsn ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
Distinct variable groups:   𝐵,𝑘   𝑘,𝑀   𝑘,𝑉
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem sumsn
StepHypRef Expression
1 nfcv 2895 . 2 𝑘𝐵
2 fsum1.1 . 2 (𝑘 = 𝑀𝐴 = 𝐵)
31, 2sumsnf 15654 1 ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {csn 4577  cc 11013  Σcsu 15597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-sup 9335  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-n0 12391  df-z 12478  df-uz 12741  df-rp 12895  df-fz 13412  df-fzo 13559  df-seq 13913  df-exp 13973  df-hash 14242  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-clim 15399  df-sum 15598
This theorem is referenced by:  fsum1  15658  sumpr  15659  sumtp  15660  sumsns  15661  fsumm1  15662  fsum1p  15664  fsum2dlem  15681  fsumge1  15708  fsumrlim  15722  fsumo1  15723  fsumiun  15732  incexclem  15747  incexc  15748  binomfallfac  15952  fprodefsum  16006  rpnnen2lem11  16137  bitsinv1  16357  2ebits  16362  bitsinvp1  16364  ehl1eudis  25350  ovolfiniun  25432  volfiniun  25478  itg11  25622  itgfsum  25758  plyeq0lem  26145  coemulhi  26189  vieta1lem2  26249  vieta1  26250  chtprm  27093  musumsum  27132  muinv  27133  logexprlim  27166  perfectlem2  27171  dchrhash  27212  rpvmasum2  27453  eulerpartlems  34396  eulerpartlemgc  34398  plymulx0  34583  signsplypnf  34586  reprinfz1  34658  breprexp  34669  circlemeth  34676  ismrer1  37901  sticksstones9  42270  sticksstones11  42272  jm2.23  43116  k0004val0  44274  dvnprodlem3  46073  stoweidlem17  46142  stoweidlem44  46169  sge0cl  46506  carageniuncllem1  46646  perfectALTVlem2  47849  nnsum3primesprm  47917  nn0sumshdiglemB  48748  nn0sumshdiglem1  48749  nn0sumshdiglem2  48750
  Copyright terms: Public domain W3C validator