MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumle Structured version   Visualization version   GIF version

Theorem fsumle 15769
Description: If all of the terms of finite sums compare, so do the sums. (Contributed by NM, 11-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumle.1 (𝜑𝐴 ∈ Fin)
fsumle.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fsumle.3 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
fsumle.4 ((𝜑𝑘𝐴) → 𝐵𝐶)
Assertion
Ref Expression
fsumle (𝜑 → Σ𝑘𝐴 𝐵 ≤ Σ𝑘𝐴 𝐶)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fsumle
StepHypRef Expression
1 fsumle.1 . . . 4 (𝜑𝐴 ∈ Fin)
2 fsumle.3 . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
3 fsumle.2 . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
42, 3resubcld 11664 . . . 4 ((𝜑𝑘𝐴) → (𝐶𝐵) ∈ ℝ)
5 fsumle.4 . . . . 5 ((𝜑𝑘𝐴) → 𝐵𝐶)
62, 3subge0d 11826 . . . . 5 ((𝜑𝑘𝐴) → (0 ≤ (𝐶𝐵) ↔ 𝐵𝐶))
75, 6mpbird 257 . . . 4 ((𝜑𝑘𝐴) → 0 ≤ (𝐶𝐵))
81, 4, 7fsumge0 15765 . . 3 (𝜑 → 0 ≤ Σ𝑘𝐴 (𝐶𝐵))
92recnd 11264 . . . 4 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
103recnd 11264 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
111, 9, 10fsumsub 15758 . . 3 (𝜑 → Σ𝑘𝐴 (𝐶𝐵) = (Σ𝑘𝐴 𝐶 − Σ𝑘𝐴 𝐵))
128, 11breqtrd 5168 . 2 (𝜑 → 0 ≤ (Σ𝑘𝐴 𝐶 − Σ𝑘𝐴 𝐵))
131, 2fsumrecl 15704 . . 3 (𝜑 → Σ𝑘𝐴 𝐶 ∈ ℝ)
141, 3fsumrecl 15704 . . 3 (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℝ)
1513, 14subge0d 11826 . 2 (𝜑 → (0 ≤ (Σ𝑘𝐴 𝐶 − Σ𝑘𝐴 𝐵) ↔ Σ𝑘𝐴 𝐵 ≤ Σ𝑘𝐴 𝐶))
1612, 15mpbid 231 1 (𝜑 → Σ𝑘𝐴 𝐵 ≤ Σ𝑘𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2099   class class class wbr 5142  (class class class)co 7414  Fincfn 8955  cr 11129  0cc0 11130  cle 11271  cmin 11466  Σcsu 15656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9656  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-sup 9457  df-oi 9525  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-n0 12495  df-z 12581  df-uz 12845  df-rp 12999  df-ico 13354  df-fz 13509  df-fzo 13652  df-seq 13991  df-exp 14051  df-hash 14314  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-clim 15456  df-sum 15657
This theorem is referenced by:  o1fsum  15783  climcndslem1  15819  climcndslem2  15820  mertenslem1  15854  ovoliunlem1  25418  ovolicc2lem4  25436  uniioombllem4  25502  dvfsumle  25941  dvfsumleOLD  25942  dvfsumabs  25944  mtest  26327  mtestbdd  26328  abelthlem7  26362  birthdaylem3  26872  fsumharmonic  26931  ftalem1  26992  ftalem5  26996  basellem8  27007  chtleppi  27130  chpub  27140  logfaclbnd  27142  bposlem1  27204  chebbnd1lem1  27389  chtppilimlem1  27393  vmadivsum  27402  rplogsumlem1  27404  rplogsumlem2  27405  rpvmasumlem  27407  dchrisumlem2  27410  dchrmusum2  27414  dchrvmasumlem3  27419  dchrvmasumiflem1  27421  dchrisum0fno1  27431  dchrisum0lem1  27436  dchrisum0lem2a  27437  mudivsum  27450  mulogsumlem  27451  mulog2sumlem2  27455  vmalogdivsum2  27458  2vmadivsumlem  27460  selberglem2  27466  selbergb  27469  selberg2b  27472  chpdifbndlem1  27473  logdivbnd  27476  selberg3lem1  27477  selberg4lem1  27480  pntrlog2bndlem1  27497  pntrlog2bndlem2  27498  pntrlog2bndlem3  27499  pntrlog2bndlem5  27501  pntrlog2bndlem6  27503  pntpbnd2  27507  pntlemj  27523  reprlt  34187  reprgt  34189  hgt750lemf  34221  hgt750lemb  34224  knoppndvlem11  35933  geomcau  37167  lcmineqlem17  41453  fltnltalem  42008  stoweidlem11  45322  stoweidlem26  45337  stoweidlem38  45349  stirlinglem12  45396  etransclem23  45568  etransclem32  45577  sge0le  45718  hoidmvlelem2  45907
  Copyright terms: Public domain W3C validator