| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsumle | Structured version Visualization version GIF version | ||
| Description: If all of the terms of finite sums compare, so do the sums. (Contributed by NM, 11-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.) |
| Ref | Expression |
|---|---|
| fsumle.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fsumle.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| fsumle.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) |
| fsumle.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≤ 𝐶) |
| Ref | Expression |
|---|---|
| fsumle | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumle.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 2 | fsumle.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) | |
| 3 | fsumle.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 4 | 2, 3 | resubcld 11540 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐶 − 𝐵) ∈ ℝ) |
| 5 | fsumle.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≤ 𝐶) | |
| 6 | 2, 3 | subge0d 11702 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (0 ≤ (𝐶 − 𝐵) ↔ 𝐵 ≤ 𝐶)) |
| 7 | 5, 6 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ (𝐶 − 𝐵)) |
| 8 | 1, 4, 7 | fsumge0 15697 | . . 3 ⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ 𝐴 (𝐶 − 𝐵)) |
| 9 | 2 | recnd 11135 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 10 | 3 | recnd 11135 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 11 | 1, 9, 10 | fsumsub 15690 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (𝐶 − 𝐵) = (Σ𝑘 ∈ 𝐴 𝐶 − Σ𝑘 ∈ 𝐴 𝐵)) |
| 12 | 8, 11 | breqtrd 5112 | . 2 ⊢ (𝜑 → 0 ≤ (Σ𝑘 ∈ 𝐴 𝐶 − Σ𝑘 ∈ 𝐴 𝐵)) |
| 13 | 1, 2 | fsumrecl 15636 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 ∈ ℝ) |
| 14 | 1, 3 | fsumrecl 15636 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℝ) |
| 15 | 13, 14 | subge0d 11702 | . 2 ⊢ (𝜑 → (0 ≤ (Σ𝑘 ∈ 𝐴 𝐶 − Σ𝑘 ∈ 𝐴 𝐵) ↔ Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐶)) |
| 16 | 12, 15 | mpbid 232 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 class class class wbr 5086 (class class class)co 7341 Fincfn 8864 ℝcr 11000 0cc0 11001 ≤ cle 11142 − cmin 11339 Σcsu 15588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-ico 13246 df-fz 13403 df-fzo 13550 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-clim 15390 df-sum 15589 |
| This theorem is referenced by: o1fsum 15715 climcndslem1 15751 climcndslem2 15752 mertenslem1 15786 ovoliunlem1 25425 ovolicc2lem4 25443 uniioombllem4 25509 dvfsumle 25948 dvfsumleOLD 25949 dvfsumabs 25951 mtest 26335 mtestbdd 26336 abelthlem7 26370 birthdaylem3 26885 fsumharmonic 26944 ftalem1 27005 ftalem5 27009 basellem8 27020 chtleppi 27143 chpub 27153 logfaclbnd 27155 bposlem1 27217 chebbnd1lem1 27402 chtppilimlem1 27406 vmadivsum 27415 rplogsumlem1 27417 rplogsumlem2 27418 rpvmasumlem 27420 dchrisumlem2 27423 dchrmusum2 27427 dchrvmasumlem3 27432 dchrvmasumiflem1 27434 dchrisum0fno1 27444 dchrisum0lem1 27449 dchrisum0lem2a 27450 mudivsum 27463 mulogsumlem 27464 mulog2sumlem2 27468 vmalogdivsum2 27471 2vmadivsumlem 27473 selberglem2 27479 selbergb 27482 selberg2b 27485 chpdifbndlem1 27486 logdivbnd 27489 selberg3lem1 27490 selberg4lem1 27493 pntrlog2bndlem1 27510 pntrlog2bndlem2 27511 pntrlog2bndlem3 27512 pntrlog2bndlem5 27514 pntrlog2bndlem6 27516 pntpbnd2 27520 pntlemj 27536 reprlt 34624 reprgt 34626 hgt750lemf 34658 hgt750lemb 34661 knoppndvlem11 36556 geomcau 37799 lcmineqlem17 42078 unitscyglem4 42231 fltnltalem 42695 stoweidlem11 46049 stoweidlem26 46064 stoweidlem38 46076 stirlinglem12 46123 etransclem23 46295 etransclem32 46304 sge0le 46445 hoidmvlelem2 46634 |
| Copyright terms: Public domain | W3C validator |