| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsumle | Structured version Visualization version GIF version | ||
| Description: If all of the terms of finite sums compare, so do the sums. (Contributed by NM, 11-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.) |
| Ref | Expression |
|---|---|
| fsumle.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fsumle.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| fsumle.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) |
| fsumle.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≤ 𝐶) |
| Ref | Expression |
|---|---|
| fsumle | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumle.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 2 | fsumle.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) | |
| 3 | fsumle.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 4 | 2, 3 | resubcld 11692 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐶 − 𝐵) ∈ ℝ) |
| 5 | fsumle.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≤ 𝐶) | |
| 6 | 2, 3 | subge0d 11854 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (0 ≤ (𝐶 − 𝐵) ↔ 𝐵 ≤ 𝐶)) |
| 7 | 5, 6 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ (𝐶 − 𝐵)) |
| 8 | 1, 4, 7 | fsumge0 15832 | . . 3 ⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ 𝐴 (𝐶 − 𝐵)) |
| 9 | 2 | recnd 11290 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 10 | 3 | recnd 11290 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 11 | 1, 9, 10 | fsumsub 15825 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (𝐶 − 𝐵) = (Σ𝑘 ∈ 𝐴 𝐶 − Σ𝑘 ∈ 𝐴 𝐵)) |
| 12 | 8, 11 | breqtrd 5168 | . 2 ⊢ (𝜑 → 0 ≤ (Σ𝑘 ∈ 𝐴 𝐶 − Σ𝑘 ∈ 𝐴 𝐵)) |
| 13 | 1, 2 | fsumrecl 15771 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 ∈ ℝ) |
| 14 | 1, 3 | fsumrecl 15771 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℝ) |
| 15 | 13, 14 | subge0d 11854 | . 2 ⊢ (𝜑 → (0 ≤ (Σ𝑘 ∈ 𝐴 𝐶 − Σ𝑘 ∈ 𝐴 𝐵) ↔ Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐶)) |
| 16 | 12, 15 | mpbid 232 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 class class class wbr 5142 (class class class)co 7432 Fincfn 8986 ℝcr 11155 0cc0 11156 ≤ cle 11297 − cmin 11493 Σcsu 15723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-sup 9483 df-oi 9551 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-n0 12529 df-z 12616 df-uz 12880 df-rp 13036 df-ico 13394 df-fz 13549 df-fzo 13696 df-seq 14044 df-exp 14104 df-hash 14371 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-clim 15525 df-sum 15724 |
| This theorem is referenced by: o1fsum 15850 climcndslem1 15886 climcndslem2 15887 mertenslem1 15921 ovoliunlem1 25538 ovolicc2lem4 25556 uniioombllem4 25622 dvfsumle 26061 dvfsumleOLD 26062 dvfsumabs 26064 mtest 26448 mtestbdd 26449 abelthlem7 26483 birthdaylem3 26997 fsumharmonic 27056 ftalem1 27117 ftalem5 27121 basellem8 27132 chtleppi 27255 chpub 27265 logfaclbnd 27267 bposlem1 27329 chebbnd1lem1 27514 chtppilimlem1 27518 vmadivsum 27527 rplogsumlem1 27529 rplogsumlem2 27530 rpvmasumlem 27532 dchrisumlem2 27535 dchrmusum2 27539 dchrvmasumlem3 27544 dchrvmasumiflem1 27546 dchrisum0fno1 27556 dchrisum0lem1 27561 dchrisum0lem2a 27562 mudivsum 27575 mulogsumlem 27576 mulog2sumlem2 27580 vmalogdivsum2 27583 2vmadivsumlem 27585 selberglem2 27591 selbergb 27594 selberg2b 27597 chpdifbndlem1 27598 logdivbnd 27601 selberg3lem1 27602 selberg4lem1 27605 pntrlog2bndlem1 27622 pntrlog2bndlem2 27623 pntrlog2bndlem3 27624 pntrlog2bndlem5 27626 pntrlog2bndlem6 27628 pntpbnd2 27632 pntlemj 27648 reprlt 34635 reprgt 34637 hgt750lemf 34669 hgt750lemb 34672 knoppndvlem11 36524 geomcau 37767 lcmineqlem17 42047 unitscyglem4 42200 fltnltalem 42677 stoweidlem11 46031 stoweidlem26 46046 stoweidlem38 46058 stirlinglem12 46105 etransclem23 46277 etransclem32 46286 sge0le 46427 hoidmvlelem2 46616 |
| Copyright terms: Public domain | W3C validator |