![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsumle | Structured version Visualization version GIF version |
Description: If all of the terms of finite sums compare, so do the sums. (Contributed by NM, 11-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
fsumle.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsumle.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
fsumle.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) |
fsumle.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≤ 𝐶) |
Ref | Expression |
---|---|
fsumle | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumle.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
2 | fsumle.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) | |
3 | fsumle.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
4 | 2, 3 | resubcld 11639 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐶 − 𝐵) ∈ ℝ) |
5 | fsumle.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≤ 𝐶) | |
6 | 2, 3 | subge0d 11801 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (0 ≤ (𝐶 − 𝐵) ↔ 𝐵 ≤ 𝐶)) |
7 | 5, 6 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ (𝐶 − 𝐵)) |
8 | 1, 4, 7 | fsumge0 15738 | . . 3 ⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ 𝐴 (𝐶 − 𝐵)) |
9 | 2 | recnd 11239 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
10 | 3 | recnd 11239 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
11 | 1, 9, 10 | fsumsub 15731 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (𝐶 − 𝐵) = (Σ𝑘 ∈ 𝐴 𝐶 − Σ𝑘 ∈ 𝐴 𝐵)) |
12 | 8, 11 | breqtrd 5164 | . 2 ⊢ (𝜑 → 0 ≤ (Σ𝑘 ∈ 𝐴 𝐶 − Σ𝑘 ∈ 𝐴 𝐵)) |
13 | 1, 2 | fsumrecl 15677 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 ∈ ℝ) |
14 | 1, 3 | fsumrecl 15677 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℝ) |
15 | 13, 14 | subge0d 11801 | . 2 ⊢ (𝜑 → (0 ≤ (Σ𝑘 ∈ 𝐴 𝐶 − Σ𝑘 ∈ 𝐴 𝐵) ↔ Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐶)) |
16 | 12, 15 | mpbid 231 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 class class class wbr 5138 (class class class)co 7401 Fincfn 8935 ℝcr 11105 0cc0 11106 ≤ cle 11246 − cmin 11441 Σcsu 15629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-oi 9501 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-n0 12470 df-z 12556 df-uz 12820 df-rp 12972 df-ico 13327 df-fz 13482 df-fzo 13625 df-seq 13964 df-exp 14025 df-hash 14288 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-clim 15429 df-sum 15630 |
This theorem is referenced by: o1fsum 15756 climcndslem1 15792 climcndslem2 15793 mertenslem1 15827 ovoliunlem1 25353 ovolicc2lem4 25371 uniioombllem4 25437 dvfsumle 25876 dvfsumleOLD 25877 dvfsumabs 25879 mtest 26257 mtestbdd 26258 abelthlem7 26292 birthdaylem3 26801 fsumharmonic 26860 ftalem1 26921 ftalem5 26925 basellem8 26936 chtleppi 27059 chpub 27069 logfaclbnd 27071 bposlem1 27133 chebbnd1lem1 27318 chtppilimlem1 27322 vmadivsum 27331 rplogsumlem1 27333 rplogsumlem2 27334 rpvmasumlem 27336 dchrisumlem2 27339 dchrmusum2 27343 dchrvmasumlem3 27348 dchrvmasumiflem1 27350 dchrisum0fno1 27360 dchrisum0lem1 27365 dchrisum0lem2a 27366 mudivsum 27379 mulogsumlem 27380 mulog2sumlem2 27384 vmalogdivsum2 27387 2vmadivsumlem 27389 selberglem2 27395 selbergb 27398 selberg2b 27401 chpdifbndlem1 27402 logdivbnd 27405 selberg3lem1 27406 selberg4lem1 27409 pntrlog2bndlem1 27426 pntrlog2bndlem2 27427 pntrlog2bndlem3 27428 pntrlog2bndlem5 27430 pntrlog2bndlem6 27432 pntpbnd2 27436 pntlemj 27452 reprlt 34120 reprgt 34122 hgt750lemf 34154 hgt750lemb 34157 knoppndvlem11 35888 geomcau 37117 lcmineqlem17 41403 fltnltalem 41893 stoweidlem11 45212 stoweidlem26 45227 stoweidlem38 45239 stirlinglem12 45286 etransclem23 45458 etransclem32 45467 sge0le 45608 hoidmvlelem2 45797 |
Copyright terms: Public domain | W3C validator |