MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumle Structured version   Visualization version   GIF version

Theorem fsumle 15439
Description: If all of the terms of finite sums compare, so do the sums. (Contributed by NM, 11-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumle.1 (𝜑𝐴 ∈ Fin)
fsumle.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fsumle.3 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
fsumle.4 ((𝜑𝑘𝐴) → 𝐵𝐶)
Assertion
Ref Expression
fsumle (𝜑 → Σ𝑘𝐴 𝐵 ≤ Σ𝑘𝐴 𝐶)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fsumle
StepHypRef Expression
1 fsumle.1 . . . 4 (𝜑𝐴 ∈ Fin)
2 fsumle.3 . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
3 fsumle.2 . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
42, 3resubcld 11333 . . . 4 ((𝜑𝑘𝐴) → (𝐶𝐵) ∈ ℝ)
5 fsumle.4 . . . . 5 ((𝜑𝑘𝐴) → 𝐵𝐶)
62, 3subge0d 11495 . . . . 5 ((𝜑𝑘𝐴) → (0 ≤ (𝐶𝐵) ↔ 𝐵𝐶))
75, 6mpbird 256 . . . 4 ((𝜑𝑘𝐴) → 0 ≤ (𝐶𝐵))
81, 4, 7fsumge0 15435 . . 3 (𝜑 → 0 ≤ Σ𝑘𝐴 (𝐶𝐵))
92recnd 10934 . . . 4 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
103recnd 10934 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
111, 9, 10fsumsub 15428 . . 3 (𝜑 → Σ𝑘𝐴 (𝐶𝐵) = (Σ𝑘𝐴 𝐶 − Σ𝑘𝐴 𝐵))
128, 11breqtrd 5096 . 2 (𝜑 → 0 ≤ (Σ𝑘𝐴 𝐶 − Σ𝑘𝐴 𝐵))
131, 2fsumrecl 15374 . . 3 (𝜑 → Σ𝑘𝐴 𝐶 ∈ ℝ)
141, 3fsumrecl 15374 . . 3 (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℝ)
1513, 14subge0d 11495 . 2 (𝜑 → (0 ≤ (Σ𝑘𝐴 𝐶 − Σ𝑘𝐴 𝐵) ↔ Σ𝑘𝐴 𝐵 ≤ Σ𝑘𝐴 𝐶))
1612, 15mpbid 231 1 (𝜑 → Σ𝑘𝐴 𝐵 ≤ Σ𝑘𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108   class class class wbr 5070  (class class class)co 7255  Fincfn 8691  cr 10801  0cc0 10802  cle 10941  cmin 11135  Σcsu 15325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326
This theorem is referenced by:  o1fsum  15453  climcndslem1  15489  climcndslem2  15490  mertenslem1  15524  ovoliunlem1  24571  ovolicc2lem4  24589  uniioombllem4  24655  dvfsumle  25090  dvfsumabs  25092  mtest  25468  mtestbdd  25469  abelthlem7  25502  birthdaylem3  26008  fsumharmonic  26066  ftalem1  26127  ftalem5  26131  basellem8  26142  chtleppi  26263  chpub  26273  logfaclbnd  26275  bposlem1  26337  chebbnd1lem1  26522  chtppilimlem1  26526  vmadivsum  26535  rplogsumlem1  26537  rplogsumlem2  26538  rpvmasumlem  26540  dchrisumlem2  26543  dchrmusum2  26547  dchrvmasumlem3  26552  dchrvmasumiflem1  26554  dchrisum0fno1  26564  dchrisum0lem1  26569  dchrisum0lem2a  26570  mudivsum  26583  mulogsumlem  26584  mulog2sumlem2  26588  vmalogdivsum2  26591  2vmadivsumlem  26593  selberglem2  26599  selbergb  26602  selberg2b  26605  chpdifbndlem1  26606  logdivbnd  26609  selberg3lem1  26610  selberg4lem1  26613  pntrlog2bndlem1  26630  pntrlog2bndlem2  26631  pntrlog2bndlem3  26632  pntrlog2bndlem5  26634  pntrlog2bndlem6  26636  pntpbnd2  26640  pntlemj  26656  reprlt  32499  reprgt  32501  hgt750lemf  32533  hgt750lemb  32536  knoppndvlem11  34629  geomcau  35844  lcmineqlem17  39981  fltnltalem  40415  stoweidlem11  43442  stoweidlem26  43457  stoweidlem38  43469  stirlinglem12  43516  etransclem23  43688  etransclem32  43697  sge0le  43835  hoidmvlelem2  44024
  Copyright terms: Public domain W3C validator