MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumsub Structured version   Visualization version   GIF version

Theorem fsumsub 15754
Description: Split a finite sum over a subtraction. (Contributed by Scott Fenton, 12-Jun-2013.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumneg.1 (𝜑𝐴 ∈ Fin)
fsumneg.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsumsub.3 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsumsub (𝜑 → Σ𝑘𝐴 (𝐵𝐶) = (Σ𝑘𝐴 𝐵 − Σ𝑘𝐴 𝐶))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fsumsub
StepHypRef Expression
1 fsumneg.1 . . . 4 (𝜑𝐴 ∈ Fin)
2 fsumneg.2 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
3 fsumsub.3 . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
43negcld 11520 . . . 4 ((𝜑𝑘𝐴) → -𝐶 ∈ ℂ)
51, 2, 4fsumadd 15706 . . 3 (𝜑 → Σ𝑘𝐴 (𝐵 + -𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 -𝐶))
61, 3fsumneg 15753 . . . 4 (𝜑 → Σ𝑘𝐴 -𝐶 = -Σ𝑘𝐴 𝐶)
76oveq2d 7403 . . 3 (𝜑 → (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 -𝐶) = (Σ𝑘𝐴 𝐵 + -Σ𝑘𝐴 𝐶))
85, 7eqtrd 2764 . 2 (𝜑 → Σ𝑘𝐴 (𝐵 + -𝐶) = (Σ𝑘𝐴 𝐵 + -Σ𝑘𝐴 𝐶))
92, 3negsubd 11539 . . 3 ((𝜑𝑘𝐴) → (𝐵 + -𝐶) = (𝐵𝐶))
109sumeq2dv 15668 . 2 (𝜑 → Σ𝑘𝐴 (𝐵 + -𝐶) = Σ𝑘𝐴 (𝐵𝐶))
111, 2fsumcl 15699 . . 3 (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℂ)
121, 3fsumcl 15699 . . 3 (𝜑 → Σ𝑘𝐴 𝐶 ∈ ℂ)
1311, 12negsubd 11539 . 2 (𝜑 → (Σ𝑘𝐴 𝐵 + -Σ𝑘𝐴 𝐶) = (Σ𝑘𝐴 𝐵 − Σ𝑘𝐴 𝐶))
148, 10, 133eqtr3d 2772 1 (𝜑 → Σ𝑘𝐴 (𝐵𝐶) = (Σ𝑘𝐴 𝐵 − Σ𝑘𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  (class class class)co 7387  Fincfn 8918  cc 11066   + caddc 11071  cmin 11405  -cneg 11406  Σcsu 15652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653
This theorem is referenced by:  fsumle  15765  fsumlt  15766  telfsumo  15768  fsumparts  15772  mertens  15852  bpolydiflem  16020  3dvds  16301  pcfac  16870  pcbc  16871  ramcl  17000  ovolicc2lem4  25421  dvfsumabs  25929  coeeulem  26129  birthdaylem2  26862  emcllem5  26910  lgamcvg2  26965  chpub  27131  logfaclbnd  27133  lgsquadlem1  27291  vmadivsum  27393  rpvmasumlem  27398  dchrmusum2  27405  dchrvmasumiflem2  27413  rpvmasum2  27423  dchrisum0lem2a  27428  dchrisum0lem2  27429  rplogsum  27438  mulogsumlem  27442  mulogsum  27443  mulog2sumlem1  27445  mulog2sumlem2  27446  mulog2sumlem3  27447  vmalogdivsum2  27449  vmalogdivsum  27450  2vmadivsumlem  27451  logsqvma  27453  selberglem1  27456  selberg3lem1  27468  selberg4lem1  27471  pntrsumo1  27476  selbergr  27479  selberg3r  27480  selberg4r  27481  selberg34r  27482  pntrlog2bndlem4  27491  pntrlog2bndlem5  27492  pntlemo  27518  ax5seglem9  28864  fwddifnp1  36153  knoppndvlem11  36510  sticksstones10  42143  sticksstones12a  42145  oddnumth  42299  etransclem46  46278
  Copyright terms: Public domain W3C validator