Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsumsub | Structured version Visualization version GIF version |
Description: Split a finite sum over a subtraction. (Contributed by Scott Fenton, 12-Jun-2013.) (Revised by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
fsumneg.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsumneg.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
fsumsub.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
fsumsub | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (𝐵 − 𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 − Σ𝑘 ∈ 𝐴 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumneg.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
2 | fsumneg.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
3 | fsumsub.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) | |
4 | 3 | negcld 11369 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → -𝐶 ∈ ℂ) |
5 | 1, 2, 4 | fsumadd 15501 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (𝐵 + -𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 + Σ𝑘 ∈ 𝐴 -𝐶)) |
6 | 1, 3 | fsumneg 15548 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 -𝐶 = -Σ𝑘 ∈ 𝐴 𝐶) |
7 | 6 | oveq2d 7323 | . . 3 ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 + Σ𝑘 ∈ 𝐴 -𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 + -Σ𝑘 ∈ 𝐴 𝐶)) |
8 | 5, 7 | eqtrd 2776 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (𝐵 + -𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 + -Σ𝑘 ∈ 𝐴 𝐶)) |
9 | 2, 3 | negsubd 11388 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 + -𝐶) = (𝐵 − 𝐶)) |
10 | 9 | sumeq2dv 15464 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (𝐵 + -𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 − 𝐶)) |
11 | 1, 2 | fsumcl 15494 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
12 | 1, 3 | fsumcl 15494 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 ∈ ℂ) |
13 | 11, 12 | negsubd 11388 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 + -Σ𝑘 ∈ 𝐴 𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 − Σ𝑘 ∈ 𝐴 𝐶)) |
14 | 8, 10, 13 | 3eqtr3d 2784 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (𝐵 − 𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 − Σ𝑘 ∈ 𝐴 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 (class class class)co 7307 Fincfn 8764 ℂcc 10919 + caddc 10924 − cmin 11255 -cneg 11256 Σcsu 15446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9447 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-pre-sup 10999 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-sup 9249 df-oi 9317 df-card 9745 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-nn 12024 df-2 12086 df-3 12087 df-n0 12284 df-z 12370 df-uz 12633 df-rp 12781 df-fz 13290 df-fzo 13433 df-seq 13772 df-exp 13833 df-hash 14095 df-cj 14859 df-re 14860 df-im 14861 df-sqrt 14995 df-abs 14996 df-clim 15246 df-sum 15447 |
This theorem is referenced by: fsumle 15560 fsumlt 15561 telfsumo 15563 fsumparts 15567 mertens 15647 bpolydiflem 15813 3dvds 16089 pcfac 16649 pcbc 16650 ramcl 16779 ovolicc2lem4 24733 dvfsumabs 25236 coeeulem 25434 birthdaylem2 26151 emcllem5 26198 lgamcvg2 26253 chpub 26417 logfaclbnd 26419 lgsquadlem1 26577 vmadivsum 26679 rpvmasumlem 26684 dchrmusum2 26691 dchrvmasumiflem2 26699 rpvmasum2 26709 dchrisum0lem2a 26714 dchrisum0lem2 26715 rplogsum 26724 mulogsumlem 26728 mulogsum 26729 mulog2sumlem1 26731 mulog2sumlem2 26732 mulog2sumlem3 26733 vmalogdivsum2 26735 vmalogdivsum 26736 2vmadivsumlem 26737 logsqvma 26739 selberglem1 26742 selberg3lem1 26754 selberg4lem1 26757 pntrsumo1 26762 selbergr 26765 selberg3r 26766 selberg4r 26767 selberg34r 26768 pntrlog2bndlem4 26777 pntrlog2bndlem5 26778 pntlemo 26804 ax5seglem9 27354 fwddifnp1 34516 knoppndvlem11 34751 sticksstones10 40311 sticksstones12a 40313 etransclem46 44050 |
Copyright terms: Public domain | W3C validator |