MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumsub Structured version   Visualization version   GIF version

Theorem fsumsub 15695
Description: Split a finite sum over a subtraction. (Contributed by Scott Fenton, 12-Jun-2013.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumneg.1 (𝜑𝐴 ∈ Fin)
fsumneg.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsumsub.3 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsumsub (𝜑 → Σ𝑘𝐴 (𝐵𝐶) = (Σ𝑘𝐴 𝐵 − Σ𝑘𝐴 𝐶))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fsumsub
StepHypRef Expression
1 fsumneg.1 . . . 4 (𝜑𝐴 ∈ Fin)
2 fsumneg.2 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
3 fsumsub.3 . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
43negcld 11462 . . . 4 ((𝜑𝑘𝐴) → -𝐶 ∈ ℂ)
51, 2, 4fsumadd 15647 . . 3 (𝜑 → Σ𝑘𝐴 (𝐵 + -𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 -𝐶))
61, 3fsumneg 15694 . . . 4 (𝜑 → Σ𝑘𝐴 -𝐶 = -Σ𝑘𝐴 𝐶)
76oveq2d 7365 . . 3 (𝜑 → (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 -𝐶) = (Σ𝑘𝐴 𝐵 + -Σ𝑘𝐴 𝐶))
85, 7eqtrd 2764 . 2 (𝜑 → Σ𝑘𝐴 (𝐵 + -𝐶) = (Σ𝑘𝐴 𝐵 + -Σ𝑘𝐴 𝐶))
92, 3negsubd 11481 . . 3 ((𝜑𝑘𝐴) → (𝐵 + -𝐶) = (𝐵𝐶))
109sumeq2dv 15609 . 2 (𝜑 → Σ𝑘𝐴 (𝐵 + -𝐶) = Σ𝑘𝐴 (𝐵𝐶))
111, 2fsumcl 15640 . . 3 (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℂ)
121, 3fsumcl 15640 . . 3 (𝜑 → Σ𝑘𝐴 𝐶 ∈ ℂ)
1311, 12negsubd 11481 . 2 (𝜑 → (Σ𝑘𝐴 𝐵 + -Σ𝑘𝐴 𝐶) = (Σ𝑘𝐴 𝐵 − Σ𝑘𝐴 𝐶))
148, 10, 133eqtr3d 2772 1 (𝜑 → Σ𝑘𝐴 (𝐵𝐶) = (Σ𝑘𝐴 𝐵 − Σ𝑘𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  (class class class)co 7349  Fincfn 8872  cc 11007   + caddc 11012  cmin 11347  -cneg 11348  Σcsu 15593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594
This theorem is referenced by:  fsumle  15706  fsumlt  15707  telfsumo  15709  fsumparts  15713  mertens  15793  bpolydiflem  15961  3dvds  16242  pcfac  16811  pcbc  16812  ramcl  16941  ovolicc2lem4  25419  dvfsumabs  25927  coeeulem  26127  birthdaylem2  26860  emcllem5  26908  lgamcvg2  26963  chpub  27129  logfaclbnd  27131  lgsquadlem1  27289  vmadivsum  27391  rpvmasumlem  27396  dchrmusum2  27403  dchrvmasumiflem2  27411  rpvmasum2  27421  dchrisum0lem2a  27426  dchrisum0lem2  27427  rplogsum  27436  mulogsumlem  27440  mulogsum  27441  mulog2sumlem1  27443  mulog2sumlem2  27444  mulog2sumlem3  27445  vmalogdivsum2  27447  vmalogdivsum  27448  2vmadivsumlem  27449  logsqvma  27451  selberglem1  27454  selberg3lem1  27466  selberg4lem1  27469  pntrsumo1  27474  selbergr  27477  selberg3r  27478  selberg4r  27479  selberg34r  27480  pntrlog2bndlem4  27489  pntrlog2bndlem5  27490  pntlemo  27516  ax5seglem9  28882  fwddifnp1  36139  knoppndvlem11  36496  sticksstones10  42128  sticksstones12a  42130  oddnumth  42284  etransclem46  46261
  Copyright terms: Public domain W3C validator