MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumsub Structured version   Visualization version   GIF version

Theorem fsumsub 15824
Description: Split a finite sum over a subtraction. (Contributed by Scott Fenton, 12-Jun-2013.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumneg.1 (𝜑𝐴 ∈ Fin)
fsumneg.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsumsub.3 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsumsub (𝜑 → Σ𝑘𝐴 (𝐵𝐶) = (Σ𝑘𝐴 𝐵 − Σ𝑘𝐴 𝐶))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fsumsub
StepHypRef Expression
1 fsumneg.1 . . . 4 (𝜑𝐴 ∈ Fin)
2 fsumneg.2 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
3 fsumsub.3 . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
43negcld 11607 . . . 4 ((𝜑𝑘𝐴) → -𝐶 ∈ ℂ)
51, 2, 4fsumadd 15776 . . 3 (𝜑 → Σ𝑘𝐴 (𝐵 + -𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 -𝐶))
61, 3fsumneg 15823 . . . 4 (𝜑 → Σ𝑘𝐴 -𝐶 = -Σ𝑘𝐴 𝐶)
76oveq2d 7447 . . 3 (𝜑 → (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 -𝐶) = (Σ𝑘𝐴 𝐵 + -Σ𝑘𝐴 𝐶))
85, 7eqtrd 2777 . 2 (𝜑 → Σ𝑘𝐴 (𝐵 + -𝐶) = (Σ𝑘𝐴 𝐵 + -Σ𝑘𝐴 𝐶))
92, 3negsubd 11626 . . 3 ((𝜑𝑘𝐴) → (𝐵 + -𝐶) = (𝐵𝐶))
109sumeq2dv 15738 . 2 (𝜑 → Σ𝑘𝐴 (𝐵 + -𝐶) = Σ𝑘𝐴 (𝐵𝐶))
111, 2fsumcl 15769 . . 3 (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℂ)
121, 3fsumcl 15769 . . 3 (𝜑 → Σ𝑘𝐴 𝐶 ∈ ℂ)
1311, 12negsubd 11626 . 2 (𝜑 → (Σ𝑘𝐴 𝐵 + -Σ𝑘𝐴 𝐶) = (Σ𝑘𝐴 𝐵 − Σ𝑘𝐴 𝐶))
148, 10, 133eqtr3d 2785 1 (𝜑 → Σ𝑘𝐴 (𝐵𝐶) = (Σ𝑘𝐴 𝐵 − Σ𝑘𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  (class class class)co 7431  Fincfn 8985  cc 11153   + caddc 11158  cmin 11492  -cneg 11493  Σcsu 15722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723
This theorem is referenced by:  fsumle  15835  fsumlt  15836  telfsumo  15838  fsumparts  15842  mertens  15922  bpolydiflem  16090  3dvds  16368  pcfac  16937  pcbc  16938  ramcl  17067  ovolicc2lem4  25555  dvfsumabs  26063  coeeulem  26263  birthdaylem2  26995  emcllem5  27043  lgamcvg2  27098  chpub  27264  logfaclbnd  27266  lgsquadlem1  27424  vmadivsum  27526  rpvmasumlem  27531  dchrmusum2  27538  dchrvmasumiflem2  27546  rpvmasum2  27556  dchrisum0lem2a  27561  dchrisum0lem2  27562  rplogsum  27571  mulogsumlem  27575  mulogsum  27576  mulog2sumlem1  27578  mulog2sumlem2  27579  mulog2sumlem3  27580  vmalogdivsum2  27582  vmalogdivsum  27583  2vmadivsumlem  27584  logsqvma  27586  selberglem1  27589  selberg3lem1  27601  selberg4lem1  27604  pntrsumo1  27609  selbergr  27612  selberg3r  27613  selberg4r  27614  selberg34r  27615  pntrlog2bndlem4  27624  pntrlog2bndlem5  27625  pntlemo  27651  ax5seglem9  28952  fwddifnp1  36166  knoppndvlem11  36523  sticksstones10  42156  sticksstones12a  42158  oddnumth  42345  etransclem46  46295
  Copyright terms: Public domain W3C validator