| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsumsub | Structured version Visualization version GIF version | ||
| Description: Split a finite sum over a subtraction. (Contributed by Scott Fenton, 12-Jun-2013.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| Ref | Expression |
|---|---|
| fsumneg.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fsumneg.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| fsumsub.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| fsumsub | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (𝐵 − 𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 − Σ𝑘 ∈ 𝐴 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumneg.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 2 | fsumneg.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 3 | fsumsub.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) | |
| 4 | 3 | negcld 11586 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → -𝐶 ∈ ℂ) |
| 5 | 1, 2, 4 | fsumadd 15761 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (𝐵 + -𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 + Σ𝑘 ∈ 𝐴 -𝐶)) |
| 6 | 1, 3 | fsumneg 15808 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 -𝐶 = -Σ𝑘 ∈ 𝐴 𝐶) |
| 7 | 6 | oveq2d 7426 | . . 3 ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 + Σ𝑘 ∈ 𝐴 -𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 + -Σ𝑘 ∈ 𝐴 𝐶)) |
| 8 | 5, 7 | eqtrd 2771 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (𝐵 + -𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 + -Σ𝑘 ∈ 𝐴 𝐶)) |
| 9 | 2, 3 | negsubd 11605 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 + -𝐶) = (𝐵 − 𝐶)) |
| 10 | 9 | sumeq2dv 15723 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (𝐵 + -𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 − 𝐶)) |
| 11 | 1, 2 | fsumcl 15754 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
| 12 | 1, 3 | fsumcl 15754 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 ∈ ℂ) |
| 13 | 11, 12 | negsubd 11605 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 + -Σ𝑘 ∈ 𝐴 𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 − Σ𝑘 ∈ 𝐴 𝐶)) |
| 14 | 8, 10, 13 | 3eqtr3d 2779 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (𝐵 − 𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 − Σ𝑘 ∈ 𝐴 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7410 Fincfn 8964 ℂcc 11132 + caddc 11137 − cmin 11471 -cneg 11472 Σcsu 15707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 df-sum 15708 |
| This theorem is referenced by: fsumle 15820 fsumlt 15821 telfsumo 15823 fsumparts 15827 mertens 15907 bpolydiflem 16075 3dvds 16355 pcfac 16924 pcbc 16925 ramcl 17054 ovolicc2lem4 25478 dvfsumabs 25986 coeeulem 26186 birthdaylem2 26919 emcllem5 26967 lgamcvg2 27022 chpub 27188 logfaclbnd 27190 lgsquadlem1 27348 vmadivsum 27450 rpvmasumlem 27455 dchrmusum2 27462 dchrvmasumiflem2 27470 rpvmasum2 27480 dchrisum0lem2a 27485 dchrisum0lem2 27486 rplogsum 27495 mulogsumlem 27499 mulogsum 27500 mulog2sumlem1 27502 mulog2sumlem2 27503 mulog2sumlem3 27504 vmalogdivsum2 27506 vmalogdivsum 27507 2vmadivsumlem 27508 logsqvma 27510 selberglem1 27513 selberg3lem1 27525 selberg4lem1 27528 pntrsumo1 27533 selbergr 27536 selberg3r 27537 selberg4r 27538 selberg34r 27539 pntrlog2bndlem4 27548 pntrlog2bndlem5 27549 pntlemo 27575 ax5seglem9 28921 fwddifnp1 36188 knoppndvlem11 36545 sticksstones10 42173 sticksstones12a 42175 oddnumth 42327 etransclem46 46276 |
| Copyright terms: Public domain | W3C validator |