![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fusgr1th | Structured version Visualization version GIF version |
Description: The sum of the degrees of all vertices of a finite simple graph is twice the size of the graph. See equation (1) in section I.1 in [Bollobas] p. 4. Also known as the "First Theorem of Graph Theory" (see https://charlesreid1.com/wiki/First_Theorem_of_Graph_Theory). (Contributed by AV, 26-Dec-2021.) |
Ref | Expression |
---|---|
sumvtxdg2size.v | ⊢ 𝑉 = (Vtx‘𝐺) |
sumvtxdg2size.i | ⊢ 𝐼 = (iEdg‘𝐺) |
sumvtxdg2size.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
Ref | Expression |
---|---|
fusgr1th | ⊢ (𝐺 ∈ FinUSGraph → Σ𝑣 ∈ 𝑉 (𝐷‘𝑣) = (2 · (♯‘𝐼))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumvtxdg2size.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | sumvtxdg2size.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | 1, 2 | fusgrfupgrfs 26629 | . 2 ⊢ (𝐺 ∈ FinUSGraph → (𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin)) |
4 | sumvtxdg2size.d | . . 3 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
5 | 1, 2, 4 | finsumvtxdg2size 26849 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑣 ∈ 𝑉 (𝐷‘𝑣) = (2 · (♯‘𝐼))) |
6 | 3, 5 | syl 17 | 1 ⊢ (𝐺 ∈ FinUSGraph → Σ𝑣 ∈ 𝑉 (𝐷‘𝑣) = (2 · (♯‘𝐼))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ‘cfv 6124 (class class class)co 6906 Fincfn 8223 · cmul 10258 2c2 11407 ♯chash 13411 Σcsu 14794 Vtxcvtx 26295 iEdgciedg 26296 UPGraphcupgr 26379 FinUSGraphcfusgr 26614 VtxDegcvtxdg 26764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-inf2 8816 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 ax-pre-sup 10331 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-fal 1672 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-disj 4843 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-se 5303 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-isom 6133 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-1st 7429 df-2nd 7430 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-2o 7828 df-oadd 7831 df-er 8010 df-en 8224 df-dom 8225 df-sdom 8226 df-fin 8227 df-sup 8618 df-oi 8685 df-card 9079 df-cda 9306 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-div 11011 df-nn 11352 df-2 11415 df-3 11416 df-n0 11620 df-xnn0 11692 df-z 11706 df-uz 11970 df-rp 12114 df-xadd 12234 df-fz 12621 df-fzo 12762 df-seq 13097 df-exp 13156 df-hash 13412 df-cj 14217 df-re 14218 df-im 14219 df-sqrt 14353 df-abs 14354 df-clim 14597 df-sum 14795 df-vtx 26297 df-iedg 26298 df-edg 26347 df-uhgr 26357 df-upgr 26381 df-umgr 26382 df-uspgr 26450 df-usgr 26451 df-fusgr 26615 df-vtxdg 26765 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |