| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gsumtp | Structured version Visualization version GIF version | ||
| Description: Group sum of an unordered triple. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
| Ref | Expression |
|---|---|
| gsumtp.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumtp.p | ⊢ + = (+g‘𝐺) |
| gsumtp.s | ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐶) |
| gsumtp.t | ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐷) |
| gsumtp.u | ⊢ (𝑘 = 𝑂 → 𝐴 = 𝐸) |
| gsumtp.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsumtp.2 | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
| gsumtp.3 | ⊢ (𝜑 → 𝑁 ∈ 𝑊) |
| gsumtp.4 | ⊢ (𝜑 → 𝑂 ∈ 𝑋) |
| gsumtp.5 | ⊢ (𝜑 → 𝑀 ≠ 𝑁) |
| gsumtp.6 | ⊢ (𝜑 → 𝑁 ≠ 𝑂) |
| gsumtp.7 | ⊢ (𝜑 → 𝑀 ≠ 𝑂) |
| gsumtp.8 | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| gsumtp.9 | ⊢ (𝜑 → 𝐷 ∈ 𝐵) |
| gsumtp.10 | ⊢ (𝜑 → 𝐸 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| gsumtp | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁, 𝑂} ↦ 𝐴)) = ((𝐶 + 𝐷) + 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumtp.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsumtp.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 3 | gsumtp.1 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | tpfi 9210 | . . . 4 ⊢ {𝑀, 𝑁, 𝑂} ∈ Fin | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑀, 𝑁, 𝑂} ∈ Fin) |
| 6 | gsumtp.s | . . . . . 6 ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐶) | |
| 7 | 6 | adantl 481 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑀) → 𝐴 = 𝐶) |
| 8 | gsumtp.8 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
| 9 | 8 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑀) → 𝐶 ∈ 𝐵) |
| 10 | 7, 9 | eqeltrd 2831 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑀) → 𝐴 ∈ 𝐵) |
| 11 | gsumtp.t | . . . . . 6 ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐷) | |
| 12 | 11 | adantl 481 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑁) → 𝐴 = 𝐷) |
| 13 | gsumtp.9 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ 𝐵) | |
| 14 | 13 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑁) → 𝐷 ∈ 𝐵) |
| 15 | 12, 14 | eqeltrd 2831 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑁) → 𝐴 ∈ 𝐵) |
| 16 | gsumtp.u | . . . . . 6 ⊢ (𝑘 = 𝑂 → 𝐴 = 𝐸) | |
| 17 | 16 | adantl 481 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑂) → 𝐴 = 𝐸) |
| 18 | gsumtp.10 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ 𝐵) | |
| 19 | 18 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑂) → 𝐸 ∈ 𝐵) |
| 20 | 17, 19 | eqeltrd 2831 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑂) → 𝐴 ∈ 𝐵) |
| 21 | eltpi 4641 | . . . . 5 ⊢ (𝑘 ∈ {𝑀, 𝑁, 𝑂} → (𝑘 = 𝑀 ∨ 𝑘 = 𝑁 ∨ 𝑘 = 𝑂)) | |
| 22 | 21 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) → (𝑘 = 𝑀 ∨ 𝑘 = 𝑁 ∨ 𝑘 = 𝑂)) |
| 23 | 10, 15, 20, 22 | mpjao3dan 1434 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) → 𝐴 ∈ 𝐵) |
| 24 | gsumtp.7 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ 𝑂) | |
| 25 | gsumtp.6 | . . . 4 ⊢ (𝜑 → 𝑁 ≠ 𝑂) | |
| 26 | disjprsn 4667 | . . . 4 ⊢ ((𝑀 ≠ 𝑂 ∧ 𝑁 ≠ 𝑂) → ({𝑀, 𝑁} ∩ {𝑂}) = ∅) | |
| 27 | 24, 25, 26 | syl2anc 584 | . . 3 ⊢ (𝜑 → ({𝑀, 𝑁} ∩ {𝑂}) = ∅) |
| 28 | df-tp 4581 | . . . 4 ⊢ {𝑀, 𝑁, 𝑂} = ({𝑀, 𝑁} ∪ {𝑂}) | |
| 29 | 28 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑀, 𝑁, 𝑂} = ({𝑀, 𝑁} ∪ {𝑂})) |
| 30 | 1, 2, 3, 5, 23, 27, 29 | gsummptfidmsplit 19843 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁, 𝑂} ↦ 𝐴)) = ((𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) + (𝐺 Σg (𝑘 ∈ {𝑂} ↦ 𝐴)))) |
| 31 | gsumtp.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
| 32 | gsumtp.3 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑊) | |
| 33 | gsumtp.5 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ 𝑁) | |
| 34 | 1, 2, 6, 11 | gsumpr 19868 | . . . 4 ⊢ ((𝐺 ∈ CMnd ∧ (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁) ∧ (𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵)) → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) = (𝐶 + 𝐷)) |
| 35 | 3, 31, 32, 33, 8, 13, 34 | syl132anc 1390 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) = (𝐶 + 𝐷)) |
| 36 | 3 | cmnmndd 19717 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 37 | gsumtp.4 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ 𝑋) | |
| 38 | 16 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = 𝑂) → 𝐴 = 𝐸) |
| 39 | 1, 36, 37, 18, 38 | gsumsnd 19865 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑂} ↦ 𝐴)) = 𝐸) |
| 40 | 35, 39 | oveq12d 7364 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) + (𝐺 Σg (𝑘 ∈ {𝑂} ↦ 𝐴))) = ((𝐶 + 𝐷) + 𝐸)) |
| 41 | 30, 40 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁, 𝑂} ↦ 𝐴)) = ((𝐶 + 𝐷) + 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∪ cun 3900 ∩ cin 3901 ∅c0 4283 {csn 4576 {cpr 4578 {ctp 4580 ↦ cmpt 5172 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 Basecbs 17120 +gcplusg 17161 Σg cgsu 17344 CMndccmn 19693 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-gsum 17346 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19230 df-cmn 19695 |
| This theorem is referenced by: evl1deg2 33538 |
| Copyright terms: Public domain | W3C validator |