![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gsumtp | Structured version Visualization version GIF version |
Description: Group sum of an unordered triple. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
Ref | Expression |
---|---|
gsumtp.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumtp.p | ⊢ + = (+g‘𝐺) |
gsumtp.s | ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐶) |
gsumtp.t | ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐷) |
gsumtp.u | ⊢ (𝑘 = 𝑂 → 𝐴 = 𝐸) |
gsumtp.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsumtp.2 | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
gsumtp.3 | ⊢ (𝜑 → 𝑁 ∈ 𝑊) |
gsumtp.4 | ⊢ (𝜑 → 𝑂 ∈ 𝑋) |
gsumtp.5 | ⊢ (𝜑 → 𝑀 ≠ 𝑁) |
gsumtp.6 | ⊢ (𝜑 → 𝑁 ≠ 𝑂) |
gsumtp.7 | ⊢ (𝜑 → 𝑀 ≠ 𝑂) |
gsumtp.8 | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
gsumtp.9 | ⊢ (𝜑 → 𝐷 ∈ 𝐵) |
gsumtp.10 | ⊢ (𝜑 → 𝐸 ∈ 𝐵) |
Ref | Expression |
---|---|
gsumtp | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁, 𝑂} ↦ 𝐴)) = ((𝐶 + 𝐷) + 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumtp.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumtp.p | . . 3 ⊢ + = (+g‘𝐺) | |
3 | gsumtp.1 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | tpfi 9372 | . . . 4 ⊢ {𝑀, 𝑁, 𝑂} ∈ Fin | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑀, 𝑁, 𝑂} ∈ Fin) |
6 | gsumtp.s | . . . . . 6 ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐶) | |
7 | 6 | adantl 481 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑀) → 𝐴 = 𝐶) |
8 | gsumtp.8 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
9 | 8 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑀) → 𝐶 ∈ 𝐵) |
10 | 7, 9 | eqeltrd 2841 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑀) → 𝐴 ∈ 𝐵) |
11 | gsumtp.t | . . . . . 6 ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐷) | |
12 | 11 | adantl 481 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑁) → 𝐴 = 𝐷) |
13 | gsumtp.9 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ 𝐵) | |
14 | 13 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑁) → 𝐷 ∈ 𝐵) |
15 | 12, 14 | eqeltrd 2841 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑁) → 𝐴 ∈ 𝐵) |
16 | gsumtp.u | . . . . . 6 ⊢ (𝑘 = 𝑂 → 𝐴 = 𝐸) | |
17 | 16 | adantl 481 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑂) → 𝐴 = 𝐸) |
18 | gsumtp.10 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ 𝐵) | |
19 | 18 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑂) → 𝐸 ∈ 𝐵) |
20 | 17, 19 | eqeltrd 2841 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑂) → 𝐴 ∈ 𝐵) |
21 | eltpi 4696 | . . . . 5 ⊢ (𝑘 ∈ {𝑀, 𝑁, 𝑂} → (𝑘 = 𝑀 ∨ 𝑘 = 𝑁 ∨ 𝑘 = 𝑂)) | |
22 | 21 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) → (𝑘 = 𝑀 ∨ 𝑘 = 𝑁 ∨ 𝑘 = 𝑂)) |
23 | 10, 15, 20, 22 | mpjao3dan 1433 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) → 𝐴 ∈ 𝐵) |
24 | gsumtp.7 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ 𝑂) | |
25 | gsumtp.6 | . . . 4 ⊢ (𝜑 → 𝑁 ≠ 𝑂) | |
26 | disjprsn 4722 | . . . 4 ⊢ ((𝑀 ≠ 𝑂 ∧ 𝑁 ≠ 𝑂) → ({𝑀, 𝑁} ∩ {𝑂}) = ∅) | |
27 | 24, 25, 26 | syl2anc 584 | . . 3 ⊢ (𝜑 → ({𝑀, 𝑁} ∩ {𝑂}) = ∅) |
28 | df-tp 4639 | . . . 4 ⊢ {𝑀, 𝑁, 𝑂} = ({𝑀, 𝑁} ∪ {𝑂}) | |
29 | 28 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑀, 𝑁, 𝑂} = ({𝑀, 𝑁} ∪ {𝑂})) |
30 | 1, 2, 3, 5, 23, 27, 29 | gsummptfidmsplit 19972 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁, 𝑂} ↦ 𝐴)) = ((𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) + (𝐺 Σg (𝑘 ∈ {𝑂} ↦ 𝐴)))) |
31 | gsumtp.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
32 | gsumtp.3 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑊) | |
33 | gsumtp.5 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ 𝑁) | |
34 | 1, 2, 6, 11 | gsumpr 19997 | . . . 4 ⊢ ((𝐺 ∈ CMnd ∧ (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁) ∧ (𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵)) → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) = (𝐶 + 𝐷)) |
35 | 3, 31, 32, 33, 8, 13, 34 | syl132anc 1389 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) = (𝐶 + 𝐷)) |
36 | 3 | cmnmndd 19846 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
37 | gsumtp.4 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ 𝑋) | |
38 | 16 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = 𝑂) → 𝐴 = 𝐸) |
39 | 1, 36, 37, 18, 38 | gsumsnd 19994 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑂} ↦ 𝐴)) = 𝐸) |
40 | 35, 39 | oveq12d 7456 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) + (𝐺 Σg (𝑘 ∈ {𝑂} ↦ 𝐴))) = ((𝐶 + 𝐷) + 𝐸)) |
41 | 30, 40 | eqtrd 2777 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁, 𝑂} ↦ 𝐴)) = ((𝐶 + 𝐷) + 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1086 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 ∪ cun 3964 ∩ cin 3965 ∅c0 4342 {csn 4634 {cpr 4636 {ctp 4638 ↦ cmpt 5234 ‘cfv 6569 (class class class)co 7438 Fincfn 8993 Basecbs 17254 +gcplusg 17307 Σg cgsu 17496 CMndccmn 19822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-iin 5002 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-isom 6578 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-of 7704 df-om 7895 df-1st 8022 df-2nd 8023 df-supp 8194 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-2o 8515 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-fsupp 9409 df-oi 9557 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-n0 12534 df-z 12621 df-uz 12886 df-fz 13554 df-fzo 13701 df-seq 14049 df-hash 14376 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-0g 17497 df-gsum 17498 df-mre 17640 df-mrc 17641 df-acs 17643 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 |
This theorem is referenced by: evl1deg2 33614 |
Copyright terms: Public domain | W3C validator |