| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gsumtp | Structured version Visualization version GIF version | ||
| Description: Group sum of an unordered triple. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
| Ref | Expression |
|---|---|
| gsumtp.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumtp.p | ⊢ + = (+g‘𝐺) |
| gsumtp.s | ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐶) |
| gsumtp.t | ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐷) |
| gsumtp.u | ⊢ (𝑘 = 𝑂 → 𝐴 = 𝐸) |
| gsumtp.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsumtp.2 | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
| gsumtp.3 | ⊢ (𝜑 → 𝑁 ∈ 𝑊) |
| gsumtp.4 | ⊢ (𝜑 → 𝑂 ∈ 𝑋) |
| gsumtp.5 | ⊢ (𝜑 → 𝑀 ≠ 𝑁) |
| gsumtp.6 | ⊢ (𝜑 → 𝑁 ≠ 𝑂) |
| gsumtp.7 | ⊢ (𝜑 → 𝑀 ≠ 𝑂) |
| gsumtp.8 | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| gsumtp.9 | ⊢ (𝜑 → 𝐷 ∈ 𝐵) |
| gsumtp.10 | ⊢ (𝜑 → 𝐸 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| gsumtp | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁, 𝑂} ↦ 𝐴)) = ((𝐶 + 𝐷) + 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumtp.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsumtp.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 3 | gsumtp.1 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | tpfi 9217 | . . . 4 ⊢ {𝑀, 𝑁, 𝑂} ∈ Fin | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑀, 𝑁, 𝑂} ∈ Fin) |
| 6 | gsumtp.s | . . . . . 6 ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐶) | |
| 7 | 6 | adantl 481 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑀) → 𝐴 = 𝐶) |
| 8 | gsumtp.8 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
| 9 | 8 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑀) → 𝐶 ∈ 𝐵) |
| 10 | 7, 9 | eqeltrd 2833 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑀) → 𝐴 ∈ 𝐵) |
| 11 | gsumtp.t | . . . . . 6 ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐷) | |
| 12 | 11 | adantl 481 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑁) → 𝐴 = 𝐷) |
| 13 | gsumtp.9 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ 𝐵) | |
| 14 | 13 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑁) → 𝐷 ∈ 𝐵) |
| 15 | 12, 14 | eqeltrd 2833 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑁) → 𝐴 ∈ 𝐵) |
| 16 | gsumtp.u | . . . . . 6 ⊢ (𝑘 = 𝑂 → 𝐴 = 𝐸) | |
| 17 | 16 | adantl 481 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑂) → 𝐴 = 𝐸) |
| 18 | gsumtp.10 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ 𝐵) | |
| 19 | 18 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑂) → 𝐸 ∈ 𝐵) |
| 20 | 17, 19 | eqeltrd 2833 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑂) → 𝐴 ∈ 𝐵) |
| 21 | eltpi 4640 | . . . . 5 ⊢ (𝑘 ∈ {𝑀, 𝑁, 𝑂} → (𝑘 = 𝑀 ∨ 𝑘 = 𝑁 ∨ 𝑘 = 𝑂)) | |
| 22 | 21 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) → (𝑘 = 𝑀 ∨ 𝑘 = 𝑁 ∨ 𝑘 = 𝑂)) |
| 23 | 10, 15, 20, 22 | mpjao3dan 1434 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) → 𝐴 ∈ 𝐵) |
| 24 | gsumtp.7 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ 𝑂) | |
| 25 | gsumtp.6 | . . . 4 ⊢ (𝜑 → 𝑁 ≠ 𝑂) | |
| 26 | disjprsn 4666 | . . . 4 ⊢ ((𝑀 ≠ 𝑂 ∧ 𝑁 ≠ 𝑂) → ({𝑀, 𝑁} ∩ {𝑂}) = ∅) | |
| 27 | 24, 25, 26 | syl2anc 584 | . . 3 ⊢ (𝜑 → ({𝑀, 𝑁} ∩ {𝑂}) = ∅) |
| 28 | df-tp 4580 | . . . 4 ⊢ {𝑀, 𝑁, 𝑂} = ({𝑀, 𝑁} ∪ {𝑂}) | |
| 29 | 28 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑀, 𝑁, 𝑂} = ({𝑀, 𝑁} ∪ {𝑂})) |
| 30 | 1, 2, 3, 5, 23, 27, 29 | gsummptfidmsplit 19844 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁, 𝑂} ↦ 𝐴)) = ((𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) + (𝐺 Σg (𝑘 ∈ {𝑂} ↦ 𝐴)))) |
| 31 | gsumtp.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
| 32 | gsumtp.3 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑊) | |
| 33 | gsumtp.5 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ 𝑁) | |
| 34 | 1, 2, 6, 11 | gsumpr 19869 | . . . 4 ⊢ ((𝐺 ∈ CMnd ∧ (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁) ∧ (𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵)) → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) = (𝐶 + 𝐷)) |
| 35 | 3, 31, 32, 33, 8, 13, 34 | syl132anc 1390 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) = (𝐶 + 𝐷)) |
| 36 | 3 | cmnmndd 19718 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 37 | gsumtp.4 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ 𝑋) | |
| 38 | 16 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = 𝑂) → 𝐴 = 𝐸) |
| 39 | 1, 36, 37, 18, 38 | gsumsnd 19866 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑂} ↦ 𝐴)) = 𝐸) |
| 40 | 35, 39 | oveq12d 7370 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) + (𝐺 Σg (𝑘 ∈ {𝑂} ↦ 𝐴))) = ((𝐶 + 𝐷) + 𝐸)) |
| 41 | 30, 40 | eqtrd 2768 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁, 𝑂} ↦ 𝐴)) = ((𝐶 + 𝐷) + 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∪ cun 3896 ∩ cin 3897 ∅c0 4282 {csn 4575 {cpr 4577 {ctp 4579 ↦ cmpt 5174 ‘cfv 6486 (class class class)co 7352 Fincfn 8875 Basecbs 17122 +gcplusg 17163 Σg cgsu 17346 CMndccmn 19694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-seq 13911 df-hash 14240 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-0g 17347 df-gsum 17348 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-mulg 18983 df-cntz 19231 df-cmn 19696 |
| This theorem is referenced by: evl1deg2 33547 |
| Copyright terms: Public domain | W3C validator |