Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumtp Structured version   Visualization version   GIF version

Theorem gsumtp 32928
Description: Group sum of an unordered triple. (Contributed by Thierry Arnoux, 22-Jun-2025.)
Hypotheses
Ref Expression
gsumtp.b 𝐵 = (Base‘𝐺)
gsumtp.p + = (+g𝐺)
gsumtp.s (𝑘 = 𝑀𝐴 = 𝐶)
gsumtp.t (𝑘 = 𝑁𝐴 = 𝐷)
gsumtp.u (𝑘 = 𝑂𝐴 = 𝐸)
gsumtp.1 (𝜑𝐺 ∈ CMnd)
gsumtp.2 (𝜑𝑀𝑉)
gsumtp.3 (𝜑𝑁𝑊)
gsumtp.4 (𝜑𝑂𝑋)
gsumtp.5 (𝜑𝑀𝑁)
gsumtp.6 (𝜑𝑁𝑂)
gsumtp.7 (𝜑𝑀𝑂)
gsumtp.8 (𝜑𝐶𝐵)
gsumtp.9 (𝜑𝐷𝐵)
gsumtp.10 (𝜑𝐸𝐵)
Assertion
Ref Expression
gsumtp (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁, 𝑂} ↦ 𝐴)) = ((𝐶 + 𝐷) + 𝐸))
Distinct variable groups:   𝐵,𝑘   𝐶,𝑘   𝐷,𝑘   𝑘,𝐸   𝑘,𝐺   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑘,𝑉   𝑘,𝑊   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   + (𝑘)   𝑋(𝑘)

Proof of Theorem gsumtp
StepHypRef Expression
1 gsumtp.b . . 3 𝐵 = (Base‘𝐺)
2 gsumtp.p . . 3 + = (+g𝐺)
3 gsumtp.1 . . 3 (𝜑𝐺 ∈ CMnd)
4 tpfi 9360 . . . 4 {𝑀, 𝑁, 𝑂} ∈ Fin
54a1i 11 . . 3 (𝜑 → {𝑀, 𝑁, 𝑂} ∈ Fin)
6 gsumtp.s . . . . . 6 (𝑘 = 𝑀𝐴 = 𝐶)
76adantl 480 . . . . 5 (((𝜑𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑀) → 𝐴 = 𝐶)
8 gsumtp.8 . . . . . 6 (𝜑𝐶𝐵)
98ad2antrr 724 . . . . 5 (((𝜑𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑀) → 𝐶𝐵)
107, 9eqeltrd 2826 . . . 4 (((𝜑𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑀) → 𝐴𝐵)
11 gsumtp.t . . . . . 6 (𝑘 = 𝑁𝐴 = 𝐷)
1211adantl 480 . . . . 5 (((𝜑𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑁) → 𝐴 = 𝐷)
13 gsumtp.9 . . . . . 6 (𝜑𝐷𝐵)
1413ad2antrr 724 . . . . 5 (((𝜑𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑁) → 𝐷𝐵)
1512, 14eqeltrd 2826 . . . 4 (((𝜑𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑁) → 𝐴𝐵)
16 gsumtp.u . . . . . 6 (𝑘 = 𝑂𝐴 = 𝐸)
1716adantl 480 . . . . 5 (((𝜑𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑂) → 𝐴 = 𝐸)
18 gsumtp.10 . . . . . 6 (𝜑𝐸𝐵)
1918ad2antrr 724 . . . . 5 (((𝜑𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑂) → 𝐸𝐵)
2017, 19eqeltrd 2826 . . . 4 (((𝜑𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑂) → 𝐴𝐵)
21 eltpi 4686 . . . . 5 (𝑘 ∈ {𝑀, 𝑁, 𝑂} → (𝑘 = 𝑀𝑘 = 𝑁𝑘 = 𝑂))
2221adantl 480 . . . 4 ((𝜑𝑘 ∈ {𝑀, 𝑁, 𝑂}) → (𝑘 = 𝑀𝑘 = 𝑁𝑘 = 𝑂))
2310, 15, 20, 22mpjao3dan 1429 . . 3 ((𝜑𝑘 ∈ {𝑀, 𝑁, 𝑂}) → 𝐴𝐵)
24 gsumtp.7 . . . 4 (𝜑𝑀𝑂)
25 gsumtp.6 . . . 4 (𝜑𝑁𝑂)
26 disjprsn 4713 . . . 4 ((𝑀𝑂𝑁𝑂) → ({𝑀, 𝑁} ∩ {𝑂}) = ∅)
2724, 25, 26syl2anc 582 . . 3 (𝜑 → ({𝑀, 𝑁} ∩ {𝑂}) = ∅)
28 df-tp 4628 . . . 4 {𝑀, 𝑁, 𝑂} = ({𝑀, 𝑁} ∪ {𝑂})
2928a1i 11 . . 3 (𝜑 → {𝑀, 𝑁, 𝑂} = ({𝑀, 𝑁} ∪ {𝑂}))
301, 2, 3, 5, 23, 27, 29gsummptfidmsplit 19924 . 2 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁, 𝑂} ↦ 𝐴)) = ((𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) + (𝐺 Σg (𝑘 ∈ {𝑂} ↦ 𝐴))))
31 gsumtp.2 . . . 4 (𝜑𝑀𝑉)
32 gsumtp.3 . . . 4 (𝜑𝑁𝑊)
33 gsumtp.5 . . . 4 (𝜑𝑀𝑁)
341, 2, 6, 11gsumpr 19949 . . . 4 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) = (𝐶 + 𝐷))
353, 31, 32, 33, 8, 13, 34syl132anc 1385 . . 3 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) = (𝐶 + 𝐷))
363cmnmndd 19798 . . . 4 (𝜑𝐺 ∈ Mnd)
37 gsumtp.4 . . . 4 (𝜑𝑂𝑋)
3816adantl 480 . . . 4 ((𝜑𝑘 = 𝑂) → 𝐴 = 𝐸)
391, 36, 37, 18, 38gsumsnd 19946 . . 3 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑂} ↦ 𝐴)) = 𝐸)
4035, 39oveq12d 7434 . 2 (𝜑 → ((𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) + (𝐺 Σg (𝑘 ∈ {𝑂} ↦ 𝐴))) = ((𝐶 + 𝐷) + 𝐸))
4130, 40eqtrd 2766 1 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁, 𝑂} ↦ 𝐴)) = ((𝐶 + 𝐷) + 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3o 1083   = wceq 1534  wcel 2099  wne 2930  cun 3944  cin 3945  c0 4322  {csn 4623  {cpr 4625  {ctp 4627  cmpt 5228  cfv 6546  (class class class)co 7416  Fincfn 8966  Basecbs 17208  +gcplusg 17261   Σg cgsu 17450  CMndccmn 19774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-iin 4996  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-isom 6555  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-of 7682  df-om 7869  df-1st 7995  df-2nd 7996  df-supp 8167  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-fsupp 9399  df-oi 9546  df-card 9975  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-nn 12259  df-2 12321  df-n0 12519  df-z 12605  df-uz 12869  df-fz 13533  df-fzo 13676  df-seq 14016  df-hash 14343  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-0g 17451  df-gsum 17452  df-mre 17594  df-mrc 17595  df-acs 17597  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-submnd 18769  df-mulg 19058  df-cntz 19307  df-cmn 19776
This theorem is referenced by:  evl1deg2  33455
  Copyright terms: Public domain W3C validator