![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gsumtp | Structured version Visualization version GIF version |
Description: Group sum of an unordered triple. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
Ref | Expression |
---|---|
gsumtp.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumtp.p | ⊢ + = (+g‘𝐺) |
gsumtp.s | ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐶) |
gsumtp.t | ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐷) |
gsumtp.u | ⊢ (𝑘 = 𝑂 → 𝐴 = 𝐸) |
gsumtp.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsumtp.2 | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
gsumtp.3 | ⊢ (𝜑 → 𝑁 ∈ 𝑊) |
gsumtp.4 | ⊢ (𝜑 → 𝑂 ∈ 𝑋) |
gsumtp.5 | ⊢ (𝜑 → 𝑀 ≠ 𝑁) |
gsumtp.6 | ⊢ (𝜑 → 𝑁 ≠ 𝑂) |
gsumtp.7 | ⊢ (𝜑 → 𝑀 ≠ 𝑂) |
gsumtp.8 | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
gsumtp.9 | ⊢ (𝜑 → 𝐷 ∈ 𝐵) |
gsumtp.10 | ⊢ (𝜑 → 𝐸 ∈ 𝐵) |
Ref | Expression |
---|---|
gsumtp | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁, 𝑂} ↦ 𝐴)) = ((𝐶 + 𝐷) + 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumtp.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumtp.p | . . 3 ⊢ + = (+g‘𝐺) | |
3 | gsumtp.1 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | tpfi 9360 | . . . 4 ⊢ {𝑀, 𝑁, 𝑂} ∈ Fin | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑀, 𝑁, 𝑂} ∈ Fin) |
6 | gsumtp.s | . . . . . 6 ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐶) | |
7 | 6 | adantl 480 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑀) → 𝐴 = 𝐶) |
8 | gsumtp.8 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
9 | 8 | ad2antrr 724 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑀) → 𝐶 ∈ 𝐵) |
10 | 7, 9 | eqeltrd 2826 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑀) → 𝐴 ∈ 𝐵) |
11 | gsumtp.t | . . . . . 6 ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐷) | |
12 | 11 | adantl 480 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑁) → 𝐴 = 𝐷) |
13 | gsumtp.9 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ 𝐵) | |
14 | 13 | ad2antrr 724 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑁) → 𝐷 ∈ 𝐵) |
15 | 12, 14 | eqeltrd 2826 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑁) → 𝐴 ∈ 𝐵) |
16 | gsumtp.u | . . . . . 6 ⊢ (𝑘 = 𝑂 → 𝐴 = 𝐸) | |
17 | 16 | adantl 480 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑂) → 𝐴 = 𝐸) |
18 | gsumtp.10 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ 𝐵) | |
19 | 18 | ad2antrr 724 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑂) → 𝐸 ∈ 𝐵) |
20 | 17, 19 | eqeltrd 2826 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑂) → 𝐴 ∈ 𝐵) |
21 | eltpi 4686 | . . . . 5 ⊢ (𝑘 ∈ {𝑀, 𝑁, 𝑂} → (𝑘 = 𝑀 ∨ 𝑘 = 𝑁 ∨ 𝑘 = 𝑂)) | |
22 | 21 | adantl 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) → (𝑘 = 𝑀 ∨ 𝑘 = 𝑁 ∨ 𝑘 = 𝑂)) |
23 | 10, 15, 20, 22 | mpjao3dan 1429 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) → 𝐴 ∈ 𝐵) |
24 | gsumtp.7 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ 𝑂) | |
25 | gsumtp.6 | . . . 4 ⊢ (𝜑 → 𝑁 ≠ 𝑂) | |
26 | disjprsn 4713 | . . . 4 ⊢ ((𝑀 ≠ 𝑂 ∧ 𝑁 ≠ 𝑂) → ({𝑀, 𝑁} ∩ {𝑂}) = ∅) | |
27 | 24, 25, 26 | syl2anc 582 | . . 3 ⊢ (𝜑 → ({𝑀, 𝑁} ∩ {𝑂}) = ∅) |
28 | df-tp 4628 | . . . 4 ⊢ {𝑀, 𝑁, 𝑂} = ({𝑀, 𝑁} ∪ {𝑂}) | |
29 | 28 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑀, 𝑁, 𝑂} = ({𝑀, 𝑁} ∪ {𝑂})) |
30 | 1, 2, 3, 5, 23, 27, 29 | gsummptfidmsplit 19924 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁, 𝑂} ↦ 𝐴)) = ((𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) + (𝐺 Σg (𝑘 ∈ {𝑂} ↦ 𝐴)))) |
31 | gsumtp.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
32 | gsumtp.3 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑊) | |
33 | gsumtp.5 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ 𝑁) | |
34 | 1, 2, 6, 11 | gsumpr 19949 | . . . 4 ⊢ ((𝐺 ∈ CMnd ∧ (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁) ∧ (𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵)) → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) = (𝐶 + 𝐷)) |
35 | 3, 31, 32, 33, 8, 13, 34 | syl132anc 1385 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) = (𝐶 + 𝐷)) |
36 | 3 | cmnmndd 19798 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
37 | gsumtp.4 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ 𝑋) | |
38 | 16 | adantl 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = 𝑂) → 𝐴 = 𝐸) |
39 | 1, 36, 37, 18, 38 | gsumsnd 19946 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑂} ↦ 𝐴)) = 𝐸) |
40 | 35, 39 | oveq12d 7434 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) + (𝐺 Σg (𝑘 ∈ {𝑂} ↦ 𝐴))) = ((𝐶 + 𝐷) + 𝐸)) |
41 | 30, 40 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁, 𝑂} ↦ 𝐴)) = ((𝐶 + 𝐷) + 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ w3o 1083 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∪ cun 3944 ∩ cin 3945 ∅c0 4322 {csn 4623 {cpr 4625 {ctp 4627 ↦ cmpt 5228 ‘cfv 6546 (class class class)co 7416 Fincfn 8966 Basecbs 17208 +gcplusg 17261 Σg cgsu 17450 CMndccmn 19774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-iin 4996 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-isom 6555 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-of 7682 df-om 7869 df-1st 7995 df-2nd 7996 df-supp 8167 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-fsupp 9399 df-oi 9546 df-card 9975 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-2 12321 df-n0 12519 df-z 12605 df-uz 12869 df-fz 13533 df-fzo 13676 df-seq 14016 df-hash 14343 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-0g 17451 df-gsum 17452 df-mre 17594 df-mrc 17595 df-acs 17597 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-submnd 18769 df-mulg 19058 df-cntz 19307 df-cmn 19776 |
This theorem is referenced by: evl1deg2 33455 |
Copyright terms: Public domain | W3C validator |