| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gsumtp | Structured version Visualization version GIF version | ||
| Description: Group sum of an unordered triple. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
| Ref | Expression |
|---|---|
| gsumtp.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumtp.p | ⊢ + = (+g‘𝐺) |
| gsumtp.s | ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐶) |
| gsumtp.t | ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐷) |
| gsumtp.u | ⊢ (𝑘 = 𝑂 → 𝐴 = 𝐸) |
| gsumtp.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsumtp.2 | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
| gsumtp.3 | ⊢ (𝜑 → 𝑁 ∈ 𝑊) |
| gsumtp.4 | ⊢ (𝜑 → 𝑂 ∈ 𝑋) |
| gsumtp.5 | ⊢ (𝜑 → 𝑀 ≠ 𝑁) |
| gsumtp.6 | ⊢ (𝜑 → 𝑁 ≠ 𝑂) |
| gsumtp.7 | ⊢ (𝜑 → 𝑀 ≠ 𝑂) |
| gsumtp.8 | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| gsumtp.9 | ⊢ (𝜑 → 𝐷 ∈ 𝐵) |
| gsumtp.10 | ⊢ (𝜑 → 𝐸 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| gsumtp | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁, 𝑂} ↦ 𝐴)) = ((𝐶 + 𝐷) + 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumtp.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsumtp.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 3 | gsumtp.1 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | tpfi 9294 | . . . 4 ⊢ {𝑀, 𝑁, 𝑂} ∈ Fin | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑀, 𝑁, 𝑂} ∈ Fin) |
| 6 | gsumtp.s | . . . . . 6 ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐶) | |
| 7 | 6 | adantl 481 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑀) → 𝐴 = 𝐶) |
| 8 | gsumtp.8 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
| 9 | 8 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑀) → 𝐶 ∈ 𝐵) |
| 10 | 7, 9 | eqeltrd 2829 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑀) → 𝐴 ∈ 𝐵) |
| 11 | gsumtp.t | . . . . . 6 ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐷) | |
| 12 | 11 | adantl 481 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑁) → 𝐴 = 𝐷) |
| 13 | gsumtp.9 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ 𝐵) | |
| 14 | 13 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑁) → 𝐷 ∈ 𝐵) |
| 15 | 12, 14 | eqeltrd 2829 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑁) → 𝐴 ∈ 𝐵) |
| 16 | gsumtp.u | . . . . . 6 ⊢ (𝑘 = 𝑂 → 𝐴 = 𝐸) | |
| 17 | 16 | adantl 481 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑂) → 𝐴 = 𝐸) |
| 18 | gsumtp.10 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ 𝐵) | |
| 19 | 18 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑂) → 𝐸 ∈ 𝐵) |
| 20 | 17, 19 | eqeltrd 2829 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑂) → 𝐴 ∈ 𝐵) |
| 21 | eltpi 4660 | . . . . 5 ⊢ (𝑘 ∈ {𝑀, 𝑁, 𝑂} → (𝑘 = 𝑀 ∨ 𝑘 = 𝑁 ∨ 𝑘 = 𝑂)) | |
| 22 | 21 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) → (𝑘 = 𝑀 ∨ 𝑘 = 𝑁 ∨ 𝑘 = 𝑂)) |
| 23 | 10, 15, 20, 22 | mpjao3dan 1434 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀, 𝑁, 𝑂}) → 𝐴 ∈ 𝐵) |
| 24 | gsumtp.7 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ 𝑂) | |
| 25 | gsumtp.6 | . . . 4 ⊢ (𝜑 → 𝑁 ≠ 𝑂) | |
| 26 | disjprsn 4686 | . . . 4 ⊢ ((𝑀 ≠ 𝑂 ∧ 𝑁 ≠ 𝑂) → ({𝑀, 𝑁} ∩ {𝑂}) = ∅) | |
| 27 | 24, 25, 26 | syl2anc 584 | . . 3 ⊢ (𝜑 → ({𝑀, 𝑁} ∩ {𝑂}) = ∅) |
| 28 | df-tp 4602 | . . . 4 ⊢ {𝑀, 𝑁, 𝑂} = ({𝑀, 𝑁} ∪ {𝑂}) | |
| 29 | 28 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑀, 𝑁, 𝑂} = ({𝑀, 𝑁} ∪ {𝑂})) |
| 30 | 1, 2, 3, 5, 23, 27, 29 | gsummptfidmsplit 19866 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁, 𝑂} ↦ 𝐴)) = ((𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) + (𝐺 Σg (𝑘 ∈ {𝑂} ↦ 𝐴)))) |
| 31 | gsumtp.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
| 32 | gsumtp.3 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑊) | |
| 33 | gsumtp.5 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ 𝑁) | |
| 34 | 1, 2, 6, 11 | gsumpr 19891 | . . . 4 ⊢ ((𝐺 ∈ CMnd ∧ (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁) ∧ (𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵)) → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) = (𝐶 + 𝐷)) |
| 35 | 3, 31, 32, 33, 8, 13, 34 | syl132anc 1390 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) = (𝐶 + 𝐷)) |
| 36 | 3 | cmnmndd 19740 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 37 | gsumtp.4 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ 𝑋) | |
| 38 | 16 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = 𝑂) → 𝐴 = 𝐸) |
| 39 | 1, 36, 37, 18, 38 | gsumsnd 19888 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑂} ↦ 𝐴)) = 𝐸) |
| 40 | 35, 39 | oveq12d 7412 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) + (𝐺 Σg (𝑘 ∈ {𝑂} ↦ 𝐴))) = ((𝐶 + 𝐷) + 𝐸)) |
| 41 | 30, 40 | eqtrd 2765 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁, 𝑂} ↦ 𝐴)) = ((𝐶 + 𝐷) + 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 ∪ cun 3920 ∩ cin 3921 ∅c0 4304 {csn 4597 {cpr 4599 {ctp 4601 ↦ cmpt 5196 ‘cfv 6519 (class class class)co 7394 Fincfn 8922 Basecbs 17185 +gcplusg 17226 Σg cgsu 17409 CMndccmn 19716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-iin 4966 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-of 7660 df-om 7851 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fsupp 9331 df-oi 9481 df-card 9910 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-n0 12459 df-z 12546 df-uz 12810 df-fz 13482 df-fzo 13629 df-seq 13977 df-hash 14306 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-0g 17410 df-gsum 17411 df-mre 17553 df-mrc 17554 df-acs 17556 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18717 df-mulg 19006 df-cntz 19255 df-cmn 19718 |
| This theorem is referenced by: evl1deg2 33554 |
| Copyright terms: Public domain | W3C validator |