Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumtp Structured version   Visualization version   GIF version

Theorem gsumtp 33006
Description: Group sum of an unordered triple. (Contributed by Thierry Arnoux, 22-Jun-2025.)
Hypotheses
Ref Expression
gsumtp.b 𝐵 = (Base‘𝐺)
gsumtp.p + = (+g𝐺)
gsumtp.s (𝑘 = 𝑀𝐴 = 𝐶)
gsumtp.t (𝑘 = 𝑁𝐴 = 𝐷)
gsumtp.u (𝑘 = 𝑂𝐴 = 𝐸)
gsumtp.1 (𝜑𝐺 ∈ CMnd)
gsumtp.2 (𝜑𝑀𝑉)
gsumtp.3 (𝜑𝑁𝑊)
gsumtp.4 (𝜑𝑂𝑋)
gsumtp.5 (𝜑𝑀𝑁)
gsumtp.6 (𝜑𝑁𝑂)
gsumtp.7 (𝜑𝑀𝑂)
gsumtp.8 (𝜑𝐶𝐵)
gsumtp.9 (𝜑𝐷𝐵)
gsumtp.10 (𝜑𝐸𝐵)
Assertion
Ref Expression
gsumtp (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁, 𝑂} ↦ 𝐴)) = ((𝐶 + 𝐷) + 𝐸))
Distinct variable groups:   𝐵,𝑘   𝐶,𝑘   𝐷,𝑘   𝑘,𝐸   𝑘,𝐺   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑘,𝑉   𝑘,𝑊   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   + (𝑘)   𝑋(𝑘)

Proof of Theorem gsumtp
StepHypRef Expression
1 gsumtp.b . . 3 𝐵 = (Base‘𝐺)
2 gsumtp.p . . 3 + = (+g𝐺)
3 gsumtp.1 . . 3 (𝜑𝐺 ∈ CMnd)
4 tpfi 9294 . . . 4 {𝑀, 𝑁, 𝑂} ∈ Fin
54a1i 11 . . 3 (𝜑 → {𝑀, 𝑁, 𝑂} ∈ Fin)
6 gsumtp.s . . . . . 6 (𝑘 = 𝑀𝐴 = 𝐶)
76adantl 481 . . . . 5 (((𝜑𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑀) → 𝐴 = 𝐶)
8 gsumtp.8 . . . . . 6 (𝜑𝐶𝐵)
98ad2antrr 726 . . . . 5 (((𝜑𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑀) → 𝐶𝐵)
107, 9eqeltrd 2829 . . . 4 (((𝜑𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑀) → 𝐴𝐵)
11 gsumtp.t . . . . . 6 (𝑘 = 𝑁𝐴 = 𝐷)
1211adantl 481 . . . . 5 (((𝜑𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑁) → 𝐴 = 𝐷)
13 gsumtp.9 . . . . . 6 (𝜑𝐷𝐵)
1413ad2antrr 726 . . . . 5 (((𝜑𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑁) → 𝐷𝐵)
1512, 14eqeltrd 2829 . . . 4 (((𝜑𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑁) → 𝐴𝐵)
16 gsumtp.u . . . . . 6 (𝑘 = 𝑂𝐴 = 𝐸)
1716adantl 481 . . . . 5 (((𝜑𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑂) → 𝐴 = 𝐸)
18 gsumtp.10 . . . . . 6 (𝜑𝐸𝐵)
1918ad2antrr 726 . . . . 5 (((𝜑𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑂) → 𝐸𝐵)
2017, 19eqeltrd 2829 . . . 4 (((𝜑𝑘 ∈ {𝑀, 𝑁, 𝑂}) ∧ 𝑘 = 𝑂) → 𝐴𝐵)
21 eltpi 4660 . . . . 5 (𝑘 ∈ {𝑀, 𝑁, 𝑂} → (𝑘 = 𝑀𝑘 = 𝑁𝑘 = 𝑂))
2221adantl 481 . . . 4 ((𝜑𝑘 ∈ {𝑀, 𝑁, 𝑂}) → (𝑘 = 𝑀𝑘 = 𝑁𝑘 = 𝑂))
2310, 15, 20, 22mpjao3dan 1434 . . 3 ((𝜑𝑘 ∈ {𝑀, 𝑁, 𝑂}) → 𝐴𝐵)
24 gsumtp.7 . . . 4 (𝜑𝑀𝑂)
25 gsumtp.6 . . . 4 (𝜑𝑁𝑂)
26 disjprsn 4686 . . . 4 ((𝑀𝑂𝑁𝑂) → ({𝑀, 𝑁} ∩ {𝑂}) = ∅)
2724, 25, 26syl2anc 584 . . 3 (𝜑 → ({𝑀, 𝑁} ∩ {𝑂}) = ∅)
28 df-tp 4602 . . . 4 {𝑀, 𝑁, 𝑂} = ({𝑀, 𝑁} ∪ {𝑂})
2928a1i 11 . . 3 (𝜑 → {𝑀, 𝑁, 𝑂} = ({𝑀, 𝑁} ∪ {𝑂}))
301, 2, 3, 5, 23, 27, 29gsummptfidmsplit 19866 . 2 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁, 𝑂} ↦ 𝐴)) = ((𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) + (𝐺 Σg (𝑘 ∈ {𝑂} ↦ 𝐴))))
31 gsumtp.2 . . . 4 (𝜑𝑀𝑉)
32 gsumtp.3 . . . 4 (𝜑𝑁𝑊)
33 gsumtp.5 . . . 4 (𝜑𝑀𝑁)
341, 2, 6, 11gsumpr 19891 . . . 4 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) = (𝐶 + 𝐷))
353, 31, 32, 33, 8, 13, 34syl132anc 1390 . . 3 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) = (𝐶 + 𝐷))
363cmnmndd 19740 . . . 4 (𝜑𝐺 ∈ Mnd)
37 gsumtp.4 . . . 4 (𝜑𝑂𝑋)
3816adantl 481 . . . 4 ((𝜑𝑘 = 𝑂) → 𝐴 = 𝐸)
391, 36, 37, 18, 38gsumsnd 19888 . . 3 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑂} ↦ 𝐴)) = 𝐸)
4035, 39oveq12d 7412 . 2 (𝜑 → ((𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) + (𝐺 Σg (𝑘 ∈ {𝑂} ↦ 𝐴))) = ((𝐶 + 𝐷) + 𝐸))
4130, 40eqtrd 2765 1 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁, 𝑂} ↦ 𝐴)) = ((𝐶 + 𝐷) + 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085   = wceq 1540  wcel 2109  wne 2927  cun 3920  cin 3921  c0 4304  {csn 4597  {cpr 4599  {ctp 4601  cmpt 5196  cfv 6519  (class class class)co 7394  Fincfn 8922  Basecbs 17185  +gcplusg 17226   Σg cgsu 17409  CMndccmn 19716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-tp 4602  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-iin 4966  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-se 5600  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-isom 6528  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-of 7660  df-om 7851  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-2o 8444  df-er 8682  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9331  df-oi 9481  df-card 9910  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-nn 12198  df-2 12260  df-n0 12459  df-z 12546  df-uz 12810  df-fz 13482  df-fzo 13629  df-seq 13977  df-hash 14306  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-0g 17410  df-gsum 17411  df-mre 17553  df-mrc 17554  df-acs 17556  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-submnd 18717  df-mulg 19006  df-cntz 19255  df-cmn 19718
This theorem is referenced by:  evl1deg2  33554
  Copyright terms: Public domain W3C validator