![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lcmfass | Structured version Visualization version GIF version |
Description: Associative law for the lcm function. (Contributed by AV, 27-Aug-2020.) |
Ref | Expression |
---|---|
lcmfass | ⊢ (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘({(lcm‘𝑌)} ∪ 𝑍)) = (lcm‘(𝑌 ∪ {(lcm‘𝑍)}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmfcl 16606 | . . . . . 6 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm‘𝑌) ∈ ℕ0) | |
2 | 1 | nn0zd 12622 | . . . . 5 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm‘𝑌) ∈ ℤ) |
3 | lcmfsn 16613 | . . . . 5 ⊢ ((lcm‘𝑌) ∈ ℤ → (lcm‘{(lcm‘𝑌)}) = (abs‘(lcm‘𝑌))) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm‘{(lcm‘𝑌)}) = (abs‘(lcm‘𝑌))) |
5 | nn0re 12519 | . . . . . 6 ⊢ ((lcm‘𝑌) ∈ ℕ0 → (lcm‘𝑌) ∈ ℝ) | |
6 | nn0ge0 12535 | . . . . . 6 ⊢ ((lcm‘𝑌) ∈ ℕ0 → 0 ≤ (lcm‘𝑌)) | |
7 | 5, 6 | jca 510 | . . . . 5 ⊢ ((lcm‘𝑌) ∈ ℕ0 → ((lcm‘𝑌) ∈ ℝ ∧ 0 ≤ (lcm‘𝑌))) |
8 | absid 15283 | . . . . 5 ⊢ (((lcm‘𝑌) ∈ ℝ ∧ 0 ≤ (lcm‘𝑌)) → (abs‘(lcm‘𝑌)) = (lcm‘𝑌)) | |
9 | 1, 7, 8 | 3syl 18 | . . . 4 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (abs‘(lcm‘𝑌)) = (lcm‘𝑌)) |
10 | 4, 9 | eqtrd 2768 | . . 3 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm‘{(lcm‘𝑌)}) = (lcm‘𝑌)) |
11 | lcmfcl 16606 | . . . . . 6 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm‘𝑍) ∈ ℕ0) | |
12 | 11 | nn0zd 12622 | . . . . 5 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm‘𝑍) ∈ ℤ) |
13 | lcmfsn 16613 | . . . . 5 ⊢ ((lcm‘𝑍) ∈ ℤ → (lcm‘{(lcm‘𝑍)}) = (abs‘(lcm‘𝑍))) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm‘{(lcm‘𝑍)}) = (abs‘(lcm‘𝑍))) |
15 | nn0re 12519 | . . . . . 6 ⊢ ((lcm‘𝑍) ∈ ℕ0 → (lcm‘𝑍) ∈ ℝ) | |
16 | nn0ge0 12535 | . . . . . 6 ⊢ ((lcm‘𝑍) ∈ ℕ0 → 0 ≤ (lcm‘𝑍)) | |
17 | 15, 16 | jca 510 | . . . . 5 ⊢ ((lcm‘𝑍) ∈ ℕ0 → ((lcm‘𝑍) ∈ ℝ ∧ 0 ≤ (lcm‘𝑍))) |
18 | absid 15283 | . . . . 5 ⊢ (((lcm‘𝑍) ∈ ℝ ∧ 0 ≤ (lcm‘𝑍)) → (abs‘(lcm‘𝑍)) = (lcm‘𝑍)) | |
19 | 11, 17, 18 | 3syl 18 | . . . 4 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (abs‘(lcm‘𝑍)) = (lcm‘𝑍)) |
20 | 14, 19 | eqtr2d 2769 | . . 3 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm‘𝑍) = (lcm‘{(lcm‘𝑍)})) |
21 | 10, 20 | oveqan12d 7445 | . 2 ⊢ (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → ((lcm‘{(lcm‘𝑌)}) lcm (lcm‘𝑍)) = ((lcm‘𝑌) lcm (lcm‘{(lcm‘𝑍)}))) |
22 | 2 | snssd 4817 | . . . 4 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → {(lcm‘𝑌)} ⊆ ℤ) |
23 | snfi 9075 | . . . 4 ⊢ {(lcm‘𝑌)} ∈ Fin | |
24 | 22, 23 | jctir 519 | . . 3 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → ({(lcm‘𝑌)} ⊆ ℤ ∧ {(lcm‘𝑌)} ∈ Fin)) |
25 | lcmfun 16623 | . . 3 ⊢ ((({(lcm‘𝑌)} ⊆ ℤ ∧ {(lcm‘𝑌)} ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘({(lcm‘𝑌)} ∪ 𝑍)) = ((lcm‘{(lcm‘𝑌)}) lcm (lcm‘𝑍))) | |
26 | 24, 25 | sylan 578 | . 2 ⊢ (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘({(lcm‘𝑌)} ∪ 𝑍)) = ((lcm‘{(lcm‘𝑌)}) lcm (lcm‘𝑍))) |
27 | 12 | snssd 4817 | . . . 4 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → {(lcm‘𝑍)} ⊆ ℤ) |
28 | snfi 9075 | . . . 4 ⊢ {(lcm‘𝑍)} ∈ Fin | |
29 | 27, 28 | jctir 519 | . . 3 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ({(lcm‘𝑍)} ⊆ ℤ ∧ {(lcm‘𝑍)} ∈ Fin)) |
30 | lcmfun 16623 | . . 3 ⊢ (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ ({(lcm‘𝑍)} ⊆ ℤ ∧ {(lcm‘𝑍)} ∈ Fin)) → (lcm‘(𝑌 ∪ {(lcm‘𝑍)})) = ((lcm‘𝑌) lcm (lcm‘{(lcm‘𝑍)}))) | |
31 | 29, 30 | sylan2 591 | . 2 ⊢ (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘(𝑌 ∪ {(lcm‘𝑍)})) = ((lcm‘𝑌) lcm (lcm‘{(lcm‘𝑍)}))) |
32 | 21, 26, 31 | 3eqtr4d 2778 | 1 ⊢ (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘({(lcm‘𝑌)} ∪ 𝑍)) = (lcm‘(𝑌 ∪ {(lcm‘𝑍)}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∪ cun 3947 ⊆ wss 3949 {csn 4632 class class class wbr 5152 ‘cfv 6553 (class class class)co 7426 Fincfn 8970 ℝcr 11145 0cc0 11146 ≤ cle 11287 ℕ0cn0 12510 ℤcz 12596 abscabs 15221 lcm clcm 16566 lcmclcmf 16567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9672 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-sup 9473 df-inf 9474 df-oi 9541 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-3 12314 df-n0 12511 df-z 12597 df-uz 12861 df-rp 13015 df-fz 13525 df-fzo 13668 df-fl 13797 df-mod 13875 df-seq 14007 df-exp 14067 df-hash 14330 df-cj 15086 df-re 15087 df-im 15088 df-sqrt 15222 df-abs 15223 df-clim 15472 df-prod 15890 df-dvds 16239 df-gcd 16477 df-lcm 16568 df-lcmf 16569 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |