![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lcmfass | Structured version Visualization version GIF version |
Description: Associative law for the lcm function. (Contributed by AV, 27-Aug-2020.) |
Ref | Expression |
---|---|
lcmfass | ⊢ (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘({(lcm‘𝑌)} ∪ 𝑍)) = (lcm‘(𝑌 ∪ {(lcm‘𝑍)}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmfcl 16590 | . . . . . 6 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm‘𝑌) ∈ ℕ0) | |
2 | 1 | nn0zd 12606 | . . . . 5 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm‘𝑌) ∈ ℤ) |
3 | lcmfsn 16597 | . . . . 5 ⊢ ((lcm‘𝑌) ∈ ℤ → (lcm‘{(lcm‘𝑌)}) = (abs‘(lcm‘𝑌))) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm‘{(lcm‘𝑌)}) = (abs‘(lcm‘𝑌))) |
5 | nn0re 12503 | . . . . . 6 ⊢ ((lcm‘𝑌) ∈ ℕ0 → (lcm‘𝑌) ∈ ℝ) | |
6 | nn0ge0 12519 | . . . . . 6 ⊢ ((lcm‘𝑌) ∈ ℕ0 → 0 ≤ (lcm‘𝑌)) | |
7 | 5, 6 | jca 511 | . . . . 5 ⊢ ((lcm‘𝑌) ∈ ℕ0 → ((lcm‘𝑌) ∈ ℝ ∧ 0 ≤ (lcm‘𝑌))) |
8 | absid 15267 | . . . . 5 ⊢ (((lcm‘𝑌) ∈ ℝ ∧ 0 ≤ (lcm‘𝑌)) → (abs‘(lcm‘𝑌)) = (lcm‘𝑌)) | |
9 | 1, 7, 8 | 3syl 18 | . . . 4 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (abs‘(lcm‘𝑌)) = (lcm‘𝑌)) |
10 | 4, 9 | eqtrd 2767 | . . 3 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm‘{(lcm‘𝑌)}) = (lcm‘𝑌)) |
11 | lcmfcl 16590 | . . . . . 6 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm‘𝑍) ∈ ℕ0) | |
12 | 11 | nn0zd 12606 | . . . . 5 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm‘𝑍) ∈ ℤ) |
13 | lcmfsn 16597 | . . . . 5 ⊢ ((lcm‘𝑍) ∈ ℤ → (lcm‘{(lcm‘𝑍)}) = (abs‘(lcm‘𝑍))) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm‘{(lcm‘𝑍)}) = (abs‘(lcm‘𝑍))) |
15 | nn0re 12503 | . . . . . 6 ⊢ ((lcm‘𝑍) ∈ ℕ0 → (lcm‘𝑍) ∈ ℝ) | |
16 | nn0ge0 12519 | . . . . . 6 ⊢ ((lcm‘𝑍) ∈ ℕ0 → 0 ≤ (lcm‘𝑍)) | |
17 | 15, 16 | jca 511 | . . . . 5 ⊢ ((lcm‘𝑍) ∈ ℕ0 → ((lcm‘𝑍) ∈ ℝ ∧ 0 ≤ (lcm‘𝑍))) |
18 | absid 15267 | . . . . 5 ⊢ (((lcm‘𝑍) ∈ ℝ ∧ 0 ≤ (lcm‘𝑍)) → (abs‘(lcm‘𝑍)) = (lcm‘𝑍)) | |
19 | 11, 17, 18 | 3syl 18 | . . . 4 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (abs‘(lcm‘𝑍)) = (lcm‘𝑍)) |
20 | 14, 19 | eqtr2d 2768 | . . 3 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm‘𝑍) = (lcm‘{(lcm‘𝑍)})) |
21 | 10, 20 | oveqan12d 7433 | . 2 ⊢ (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → ((lcm‘{(lcm‘𝑌)}) lcm (lcm‘𝑍)) = ((lcm‘𝑌) lcm (lcm‘{(lcm‘𝑍)}))) |
22 | 2 | snssd 4808 | . . . 4 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → {(lcm‘𝑌)} ⊆ ℤ) |
23 | snfi 9060 | . . . 4 ⊢ {(lcm‘𝑌)} ∈ Fin | |
24 | 22, 23 | jctir 520 | . . 3 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → ({(lcm‘𝑌)} ⊆ ℤ ∧ {(lcm‘𝑌)} ∈ Fin)) |
25 | lcmfun 16607 | . . 3 ⊢ ((({(lcm‘𝑌)} ⊆ ℤ ∧ {(lcm‘𝑌)} ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘({(lcm‘𝑌)} ∪ 𝑍)) = ((lcm‘{(lcm‘𝑌)}) lcm (lcm‘𝑍))) | |
26 | 24, 25 | sylan 579 | . 2 ⊢ (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘({(lcm‘𝑌)} ∪ 𝑍)) = ((lcm‘{(lcm‘𝑌)}) lcm (lcm‘𝑍))) |
27 | 12 | snssd 4808 | . . . 4 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → {(lcm‘𝑍)} ⊆ ℤ) |
28 | snfi 9060 | . . . 4 ⊢ {(lcm‘𝑍)} ∈ Fin | |
29 | 27, 28 | jctir 520 | . . 3 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ({(lcm‘𝑍)} ⊆ ℤ ∧ {(lcm‘𝑍)} ∈ Fin)) |
30 | lcmfun 16607 | . . 3 ⊢ (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ ({(lcm‘𝑍)} ⊆ ℤ ∧ {(lcm‘𝑍)} ∈ Fin)) → (lcm‘(𝑌 ∪ {(lcm‘𝑍)})) = ((lcm‘𝑌) lcm (lcm‘{(lcm‘𝑍)}))) | |
31 | 29, 30 | sylan2 592 | . 2 ⊢ (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘(𝑌 ∪ {(lcm‘𝑍)})) = ((lcm‘𝑌) lcm (lcm‘{(lcm‘𝑍)}))) |
32 | 21, 26, 31 | 3eqtr4d 2777 | 1 ⊢ (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘({(lcm‘𝑌)} ∪ 𝑍)) = (lcm‘(𝑌 ∪ {(lcm‘𝑍)}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∪ cun 3942 ⊆ wss 3944 {csn 4624 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 Fincfn 8955 ℝcr 11129 0cc0 11130 ≤ cle 11271 ℕ0cn0 12494 ℤcz 12580 abscabs 15205 lcm clcm 16550 lcmclcmf 16551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9656 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-sup 9457 df-inf 9458 df-oi 9525 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-n0 12495 df-z 12581 df-uz 12845 df-rp 12999 df-fz 13509 df-fzo 13652 df-fl 13781 df-mod 13859 df-seq 13991 df-exp 14051 df-hash 14314 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-clim 15456 df-prod 15874 df-dvds 16223 df-gcd 16461 df-lcm 16552 df-lcmf 16553 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |