Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lcmfass | Structured version Visualization version GIF version |
Description: Associative law for the lcm function. (Contributed by AV, 27-Aug-2020.) |
Ref | Expression |
---|---|
lcmfass | ⊢ (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘({(lcm‘𝑌)} ∪ 𝑍)) = (lcm‘(𝑌 ∪ {(lcm‘𝑍)}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmfcl 16261 | . . . . . 6 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm‘𝑌) ∈ ℕ0) | |
2 | 1 | nn0zd 12353 | . . . . 5 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm‘𝑌) ∈ ℤ) |
3 | lcmfsn 16268 | . . . . 5 ⊢ ((lcm‘𝑌) ∈ ℤ → (lcm‘{(lcm‘𝑌)}) = (abs‘(lcm‘𝑌))) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm‘{(lcm‘𝑌)}) = (abs‘(lcm‘𝑌))) |
5 | nn0re 12172 | . . . . . 6 ⊢ ((lcm‘𝑌) ∈ ℕ0 → (lcm‘𝑌) ∈ ℝ) | |
6 | nn0ge0 12188 | . . . . . 6 ⊢ ((lcm‘𝑌) ∈ ℕ0 → 0 ≤ (lcm‘𝑌)) | |
7 | 5, 6 | jca 511 | . . . . 5 ⊢ ((lcm‘𝑌) ∈ ℕ0 → ((lcm‘𝑌) ∈ ℝ ∧ 0 ≤ (lcm‘𝑌))) |
8 | absid 14936 | . . . . 5 ⊢ (((lcm‘𝑌) ∈ ℝ ∧ 0 ≤ (lcm‘𝑌)) → (abs‘(lcm‘𝑌)) = (lcm‘𝑌)) | |
9 | 1, 7, 8 | 3syl 18 | . . . 4 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (abs‘(lcm‘𝑌)) = (lcm‘𝑌)) |
10 | 4, 9 | eqtrd 2778 | . . 3 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm‘{(lcm‘𝑌)}) = (lcm‘𝑌)) |
11 | lcmfcl 16261 | . . . . . 6 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm‘𝑍) ∈ ℕ0) | |
12 | 11 | nn0zd 12353 | . . . . 5 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm‘𝑍) ∈ ℤ) |
13 | lcmfsn 16268 | . . . . 5 ⊢ ((lcm‘𝑍) ∈ ℤ → (lcm‘{(lcm‘𝑍)}) = (abs‘(lcm‘𝑍))) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm‘{(lcm‘𝑍)}) = (abs‘(lcm‘𝑍))) |
15 | nn0re 12172 | . . . . . 6 ⊢ ((lcm‘𝑍) ∈ ℕ0 → (lcm‘𝑍) ∈ ℝ) | |
16 | nn0ge0 12188 | . . . . . 6 ⊢ ((lcm‘𝑍) ∈ ℕ0 → 0 ≤ (lcm‘𝑍)) | |
17 | 15, 16 | jca 511 | . . . . 5 ⊢ ((lcm‘𝑍) ∈ ℕ0 → ((lcm‘𝑍) ∈ ℝ ∧ 0 ≤ (lcm‘𝑍))) |
18 | absid 14936 | . . . . 5 ⊢ (((lcm‘𝑍) ∈ ℝ ∧ 0 ≤ (lcm‘𝑍)) → (abs‘(lcm‘𝑍)) = (lcm‘𝑍)) | |
19 | 11, 17, 18 | 3syl 18 | . . . 4 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (abs‘(lcm‘𝑍)) = (lcm‘𝑍)) |
20 | 14, 19 | eqtr2d 2779 | . . 3 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm‘𝑍) = (lcm‘{(lcm‘𝑍)})) |
21 | 10, 20 | oveqan12d 7274 | . 2 ⊢ (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → ((lcm‘{(lcm‘𝑌)}) lcm (lcm‘𝑍)) = ((lcm‘𝑌) lcm (lcm‘{(lcm‘𝑍)}))) |
22 | 2 | snssd 4739 | . . . 4 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → {(lcm‘𝑌)} ⊆ ℤ) |
23 | snfi 8788 | . . . 4 ⊢ {(lcm‘𝑌)} ∈ Fin | |
24 | 22, 23 | jctir 520 | . . 3 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → ({(lcm‘𝑌)} ⊆ ℤ ∧ {(lcm‘𝑌)} ∈ Fin)) |
25 | lcmfun 16278 | . . 3 ⊢ ((({(lcm‘𝑌)} ⊆ ℤ ∧ {(lcm‘𝑌)} ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘({(lcm‘𝑌)} ∪ 𝑍)) = ((lcm‘{(lcm‘𝑌)}) lcm (lcm‘𝑍))) | |
26 | 24, 25 | sylan 579 | . 2 ⊢ (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘({(lcm‘𝑌)} ∪ 𝑍)) = ((lcm‘{(lcm‘𝑌)}) lcm (lcm‘𝑍))) |
27 | 12 | snssd 4739 | . . . 4 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → {(lcm‘𝑍)} ⊆ ℤ) |
28 | snfi 8788 | . . . 4 ⊢ {(lcm‘𝑍)} ∈ Fin | |
29 | 27, 28 | jctir 520 | . . 3 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ({(lcm‘𝑍)} ⊆ ℤ ∧ {(lcm‘𝑍)} ∈ Fin)) |
30 | lcmfun 16278 | . . 3 ⊢ (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ ({(lcm‘𝑍)} ⊆ ℤ ∧ {(lcm‘𝑍)} ∈ Fin)) → (lcm‘(𝑌 ∪ {(lcm‘𝑍)})) = ((lcm‘𝑌) lcm (lcm‘{(lcm‘𝑍)}))) | |
31 | 29, 30 | sylan2 592 | . 2 ⊢ (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘(𝑌 ∪ {(lcm‘𝑍)})) = ((lcm‘𝑌) lcm (lcm‘{(lcm‘𝑍)}))) |
32 | 21, 26, 31 | 3eqtr4d 2788 | 1 ⊢ (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘({(lcm‘𝑌)} ∪ 𝑍)) = (lcm‘(𝑌 ∪ {(lcm‘𝑍)}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 ⊆ wss 3883 {csn 4558 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 ℝcr 10801 0cc0 10802 ≤ cle 10941 ℕ0cn0 12163 ℤcz 12249 abscabs 14873 lcm clcm 16221 lcmclcmf 16222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-prod 15544 df-dvds 15892 df-gcd 16130 df-lcm 16223 df-lcmf 16224 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |