| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lcmfass | Structured version Visualization version GIF version | ||
| Description: Associative law for the lcm function. (Contributed by AV, 27-Aug-2020.) |
| Ref | Expression |
|---|---|
| lcmfass | ⊢ (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘({(lcm‘𝑌)} ∪ 𝑍)) = (lcm‘(𝑌 ∪ {(lcm‘𝑍)}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmfcl 16598 | . . . . . 6 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm‘𝑌) ∈ ℕ0) | |
| 2 | 1 | nn0zd 12555 | . . . . 5 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm‘𝑌) ∈ ℤ) |
| 3 | lcmfsn 16605 | . . . . 5 ⊢ ((lcm‘𝑌) ∈ ℤ → (lcm‘{(lcm‘𝑌)}) = (abs‘(lcm‘𝑌))) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm‘{(lcm‘𝑌)}) = (abs‘(lcm‘𝑌))) |
| 5 | nn0re 12451 | . . . . . 6 ⊢ ((lcm‘𝑌) ∈ ℕ0 → (lcm‘𝑌) ∈ ℝ) | |
| 6 | nn0ge0 12467 | . . . . . 6 ⊢ ((lcm‘𝑌) ∈ ℕ0 → 0 ≤ (lcm‘𝑌)) | |
| 7 | 5, 6 | jca 511 | . . . . 5 ⊢ ((lcm‘𝑌) ∈ ℕ0 → ((lcm‘𝑌) ∈ ℝ ∧ 0 ≤ (lcm‘𝑌))) |
| 8 | absid 15262 | . . . . 5 ⊢ (((lcm‘𝑌) ∈ ℝ ∧ 0 ≤ (lcm‘𝑌)) → (abs‘(lcm‘𝑌)) = (lcm‘𝑌)) | |
| 9 | 1, 7, 8 | 3syl 18 | . . . 4 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (abs‘(lcm‘𝑌)) = (lcm‘𝑌)) |
| 10 | 4, 9 | eqtrd 2764 | . . 3 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm‘{(lcm‘𝑌)}) = (lcm‘𝑌)) |
| 11 | lcmfcl 16598 | . . . . . 6 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm‘𝑍) ∈ ℕ0) | |
| 12 | 11 | nn0zd 12555 | . . . . 5 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm‘𝑍) ∈ ℤ) |
| 13 | lcmfsn 16605 | . . . . 5 ⊢ ((lcm‘𝑍) ∈ ℤ → (lcm‘{(lcm‘𝑍)}) = (abs‘(lcm‘𝑍))) | |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm‘{(lcm‘𝑍)}) = (abs‘(lcm‘𝑍))) |
| 15 | nn0re 12451 | . . . . . 6 ⊢ ((lcm‘𝑍) ∈ ℕ0 → (lcm‘𝑍) ∈ ℝ) | |
| 16 | nn0ge0 12467 | . . . . . 6 ⊢ ((lcm‘𝑍) ∈ ℕ0 → 0 ≤ (lcm‘𝑍)) | |
| 17 | 15, 16 | jca 511 | . . . . 5 ⊢ ((lcm‘𝑍) ∈ ℕ0 → ((lcm‘𝑍) ∈ ℝ ∧ 0 ≤ (lcm‘𝑍))) |
| 18 | absid 15262 | . . . . 5 ⊢ (((lcm‘𝑍) ∈ ℝ ∧ 0 ≤ (lcm‘𝑍)) → (abs‘(lcm‘𝑍)) = (lcm‘𝑍)) | |
| 19 | 11, 17, 18 | 3syl 18 | . . . 4 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (abs‘(lcm‘𝑍)) = (lcm‘𝑍)) |
| 20 | 14, 19 | eqtr2d 2765 | . . 3 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm‘𝑍) = (lcm‘{(lcm‘𝑍)})) |
| 21 | 10, 20 | oveqan12d 7406 | . 2 ⊢ (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → ((lcm‘{(lcm‘𝑌)}) lcm (lcm‘𝑍)) = ((lcm‘𝑌) lcm (lcm‘{(lcm‘𝑍)}))) |
| 22 | 2 | snssd 4773 | . . . 4 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → {(lcm‘𝑌)} ⊆ ℤ) |
| 23 | snfi 9014 | . . . 4 ⊢ {(lcm‘𝑌)} ∈ Fin | |
| 24 | 22, 23 | jctir 520 | . . 3 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → ({(lcm‘𝑌)} ⊆ ℤ ∧ {(lcm‘𝑌)} ∈ Fin)) |
| 25 | lcmfun 16615 | . . 3 ⊢ ((({(lcm‘𝑌)} ⊆ ℤ ∧ {(lcm‘𝑌)} ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘({(lcm‘𝑌)} ∪ 𝑍)) = ((lcm‘{(lcm‘𝑌)}) lcm (lcm‘𝑍))) | |
| 26 | 24, 25 | sylan 580 | . 2 ⊢ (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘({(lcm‘𝑌)} ∪ 𝑍)) = ((lcm‘{(lcm‘𝑌)}) lcm (lcm‘𝑍))) |
| 27 | 12 | snssd 4773 | . . . 4 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → {(lcm‘𝑍)} ⊆ ℤ) |
| 28 | snfi 9014 | . . . 4 ⊢ {(lcm‘𝑍)} ∈ Fin | |
| 29 | 27, 28 | jctir 520 | . . 3 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ({(lcm‘𝑍)} ⊆ ℤ ∧ {(lcm‘𝑍)} ∈ Fin)) |
| 30 | lcmfun 16615 | . . 3 ⊢ (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ ({(lcm‘𝑍)} ⊆ ℤ ∧ {(lcm‘𝑍)} ∈ Fin)) → (lcm‘(𝑌 ∪ {(lcm‘𝑍)})) = ((lcm‘𝑌) lcm (lcm‘{(lcm‘𝑍)}))) | |
| 31 | 29, 30 | sylan2 593 | . 2 ⊢ (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘(𝑌 ∪ {(lcm‘𝑍)})) = ((lcm‘𝑌) lcm (lcm‘{(lcm‘𝑍)}))) |
| 32 | 21, 26, 31 | 3eqtr4d 2774 | 1 ⊢ (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘({(lcm‘𝑌)} ∪ 𝑍)) = (lcm‘(𝑌 ∪ {(lcm‘𝑍)}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cun 3912 ⊆ wss 3914 {csn 4589 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 ℝcr 11067 0cc0 11068 ≤ cle 11209 ℕ0cn0 12442 ℤcz 12529 abscabs 15200 lcm clcm 16558 lcmclcmf 16559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-prod 15870 df-dvds 16223 df-gcd 16465 df-lcm 16560 df-lcmf 16561 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |