MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1fvalcl Structured version   Visualization version   GIF version

Theorem coe1fvalcl 22230
Description: A coefficient of a univariate polynomial over a class/ring is an element of this class/ring. (Contributed by AV, 9-Oct-2019.)
Hypotheses
Ref Expression
coe1fval.a 𝐴 = (coe1𝐹)
coe1f.b 𝐵 = (Base‘𝑃)
coe1f.p 𝑃 = (Poly1𝑅)
coe1f.k 𝐾 = (Base‘𝑅)
Assertion
Ref Expression
coe1fvalcl ((𝐹𝐵𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ 𝐾)

Proof of Theorem coe1fvalcl
StepHypRef Expression
1 coe1fval.a . . 3 𝐴 = (coe1𝐹)
2 coe1f.b . . 3 𝐵 = (Base‘𝑃)
3 coe1f.p . . 3 𝑃 = (Poly1𝑅)
4 coe1f.k . . 3 𝐾 = (Base‘𝑅)
51, 2, 3, 4coe1f 22229 . 2 (𝐹𝐵𝐴:ℕ0𝐾)
65ffvelcdmda 7104 1 ((𝐹𝐵𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cfv 6563  0cn0 12524  Basecbs 17245  Poly1cpl1 22194  coe1cco1 22195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-tset 17317  df-ple 17318  df-psr 21947  df-opsr 21951  df-psr1 22197  df-ply1 22199  df-coe1 22200
This theorem is referenced by:  mptcoe1fsupp  22233  cply1mul  22316  cply1coe0bi  22322  evls1fpws  22389  cpm2mf  22774  m2cpminvid2lem  22776  m2cpminvid2  22777  m2cpmfo  22778  decpmatcl  22789  decpmatmul  22794  pmatcollpw3lem  22805  pmatcollpwscmatlem1  22811  pmatcollpwscmatlem2  22812  pm2mpf1  22821  mptcoe1matfsupp  22824  mp2pm2mplem2  22829  mp2pm2mplem4  22831  pm2mpghm  22838  cpmidgsumm2pm  22891  cpmidpmatlem2  22893  cpmidpmatlem3  22894  chcoeffeqlem  22907  deg1mul  26169  deg1le0eq0  33578  ply1unit  33580  evl1deg1  33581  evl1deg2  33582  evl1deg3  33583  ply1dg1rt  33584  m1pmeq  33588  evls1fldgencl  33695  irngnzply1lem  33705  minplyirredlem  33718  2sqr3minply  33753  ply1mulgsumlem2  48233  ply1mulgsum  48236
  Copyright terms: Public domain W3C validator