Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coe1fvalcl | Structured version Visualization version GIF version |
Description: A coefficient of a univariate polynomial over a class/ring is an element of this class/ring. (Contributed by AV, 9-Oct-2019.) |
Ref | Expression |
---|---|
coe1fval.a | ⊢ 𝐴 = (coe1‘𝐹) |
coe1f.b | ⊢ 𝐵 = (Base‘𝑃) |
coe1f.p | ⊢ 𝑃 = (Poly1‘𝑅) |
coe1f.k | ⊢ 𝐾 = (Base‘𝑅) |
Ref | Expression |
---|---|
coe1fvalcl | ⊢ ((𝐹 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0) → (𝐴‘𝑁) ∈ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coe1fval.a | . . 3 ⊢ 𝐴 = (coe1‘𝐹) | |
2 | coe1f.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
3 | coe1f.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | coe1f.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
5 | 1, 2, 3, 4 | coe1f 21431 | . 2 ⊢ (𝐹 ∈ 𝐵 → 𝐴:ℕ0⟶𝐾) |
6 | 5 | ffvelcdmda 6993 | 1 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0) → (𝐴‘𝑁) ∈ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ‘cfv 6458 ℕ0cn0 12283 Basecbs 16961 Poly1cpl1 21397 coe1cco1 21398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9177 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 df-9 12093 df-n0 12284 df-z 12370 df-dec 12488 df-uz 12633 df-fz 13290 df-struct 16897 df-sets 16914 df-slot 16932 df-ndx 16944 df-base 16962 df-ress 16991 df-plusg 17024 df-mulr 17025 df-sca 17027 df-vsca 17028 df-tset 17030 df-ple 17031 df-psr 21161 df-opsr 21165 df-psr1 21400 df-ply1 21402 df-coe1 21403 |
This theorem is referenced by: mptcoe1fsupp 21435 cply1mul 21514 cply1coe0bi 21520 cpm2mf 21950 m2cpminvid2lem 21952 m2cpminvid2 21953 m2cpmfo 21954 decpmatcl 21965 decpmatmul 21970 pmatcollpw3lem 21981 pmatcollpwscmatlem1 21987 pmatcollpwscmatlem2 21988 pm2mpf1 21997 mptcoe1matfsupp 22000 mp2pm2mplem2 22005 mp2pm2mplem4 22007 pm2mpghm 22014 cpmidgsumm2pm 22067 cpmidpmatlem2 22069 cpmidpmatlem3 22070 chcoeffeqlem 22083 ply1mulgsumlem2 45972 ply1mulgsum 45975 |
Copyright terms: Public domain | W3C validator |