| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coe1fvalcl | Structured version Visualization version GIF version | ||
| Description: A coefficient of a univariate polynomial over a class/ring is an element of this class/ring. (Contributed by AV, 9-Oct-2019.) |
| Ref | Expression |
|---|---|
| coe1fval.a | ⊢ 𝐴 = (coe1‘𝐹) |
| coe1f.b | ⊢ 𝐵 = (Base‘𝑃) |
| coe1f.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| coe1f.k | ⊢ 𝐾 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| coe1fvalcl | ⊢ ((𝐹 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0) → (𝐴‘𝑁) ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1fval.a | . . 3 ⊢ 𝐴 = (coe1‘𝐹) | |
| 2 | coe1f.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 3 | coe1f.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 4 | coe1f.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
| 5 | 1, 2, 3, 4 | coe1f 22125 | . 2 ⊢ (𝐹 ∈ 𝐵 → 𝐴:ℕ0⟶𝐾) |
| 6 | 5 | ffvelcdmda 7017 | 1 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0) → (𝐴‘𝑁) ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 ℕ0cn0 12381 Basecbs 17120 Poly1cpl1 22090 coe1cco1 22091 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-tset 17180 df-ple 17181 df-psr 21847 df-opsr 21851 df-psr1 22093 df-ply1 22095 df-coe1 22096 |
| This theorem is referenced by: mptcoe1fsupp 22129 cply1mul 22212 cply1coe0bi 22218 evls1fpws 22285 cpm2mf 22668 m2cpminvid2lem 22670 m2cpminvid2 22671 m2cpmfo 22672 decpmatcl 22683 decpmatmul 22688 pmatcollpw3lem 22699 pmatcollpwscmatlem1 22705 pmatcollpwscmatlem2 22706 pm2mpf1 22715 mptcoe1matfsupp 22718 mp2pm2mplem2 22723 mp2pm2mplem4 22725 pm2mpghm 22732 cpmidgsumm2pm 22785 cpmidpmatlem2 22787 cpmidpmatlem3 22788 chcoeffeqlem 22801 deg1mul 26048 ressply1evls1 33526 deg1le0eq0 33534 ply1unit 33536 evl1deg1 33537 evl1deg2 33538 evl1deg3 33539 ply1dg1rt 33541 m1pmeq 33545 evls1fldgencl 33681 irngnzply1lem 33701 minplyirredlem 33721 2sqr3minply 33791 ply1mulgsumlem2 48425 ply1mulgsum 48428 |
| Copyright terms: Public domain | W3C validator |