| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cosmpi | Structured version Visualization version GIF version | ||
| Description: Cosine of a number less π. (Contributed by Paul Chapman, 15-Mar-2008.) |
| Ref | Expression |
|---|---|
| cosmpi | ⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 − π)) = -(cos‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | picn 26374 | . . 3 ⊢ π ∈ ℂ | |
| 2 | cossub 16144 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ π ∈ ℂ) → (cos‘(𝐴 − π)) = (((cos‘𝐴) · (cos‘π)) + ((sin‘𝐴) · (sin‘π)))) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 − π)) = (((cos‘𝐴) · (cos‘π)) + ((sin‘𝐴) · (sin‘π)))) |
| 4 | cospi 26388 | . . . . . 6 ⊢ (cos‘π) = -1 | |
| 5 | 4 | oveq2i 7405 | . . . . 5 ⊢ ((cos‘𝐴) · (cos‘π)) = ((cos‘𝐴) · -1) |
| 6 | coscl 16102 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | |
| 7 | neg1cn 12311 | . . . . . . . 8 ⊢ -1 ∈ ℂ | |
| 8 | mulcom 11172 | . . . . . . . 8 ⊢ (((cos‘𝐴) ∈ ℂ ∧ -1 ∈ ℂ) → ((cos‘𝐴) · -1) = (-1 · (cos‘𝐴))) | |
| 9 | 7, 8 | mpan2 691 | . . . . . . 7 ⊢ ((cos‘𝐴) ∈ ℂ → ((cos‘𝐴) · -1) = (-1 · (cos‘𝐴))) |
| 10 | mulm1 11635 | . . . . . . 7 ⊢ ((cos‘𝐴) ∈ ℂ → (-1 · (cos‘𝐴)) = -(cos‘𝐴)) | |
| 11 | 9, 10 | eqtrd 2765 | . . . . . 6 ⊢ ((cos‘𝐴) ∈ ℂ → ((cos‘𝐴) · -1) = -(cos‘𝐴)) |
| 12 | 6, 11 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) · -1) = -(cos‘𝐴)) |
| 13 | 5, 12 | eqtrid 2777 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) · (cos‘π)) = -(cos‘𝐴)) |
| 14 | sinpi 26372 | . . . . . 6 ⊢ (sin‘π) = 0 | |
| 15 | 14 | oveq2i 7405 | . . . . 5 ⊢ ((sin‘𝐴) · (sin‘π)) = ((sin‘𝐴) · 0) |
| 16 | sincl 16101 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) | |
| 17 | 16 | mul01d 11391 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴) · 0) = 0) |
| 18 | 15, 17 | eqtrid 2777 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴) · (sin‘π)) = 0) |
| 19 | 13, 18 | oveq12d 7412 | . . 3 ⊢ (𝐴 ∈ ℂ → (((cos‘𝐴) · (cos‘π)) + ((sin‘𝐴) · (sin‘π))) = (-(cos‘𝐴) + 0)) |
| 20 | 6 | negcld 11538 | . . . 4 ⊢ (𝐴 ∈ ℂ → -(cos‘𝐴) ∈ ℂ) |
| 21 | 20 | addridd 11392 | . . 3 ⊢ (𝐴 ∈ ℂ → (-(cos‘𝐴) + 0) = -(cos‘𝐴)) |
| 22 | 19, 21 | eqtrd 2765 | . 2 ⊢ (𝐴 ∈ ℂ → (((cos‘𝐴) · (cos‘π)) + ((sin‘𝐴) · (sin‘π))) = -(cos‘𝐴)) |
| 23 | 3, 22 | eqtrd 2765 | 1 ⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 − π)) = -(cos‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6519 (class class class)co 7394 ℂcc 11084 0cc0 11086 1c1 11087 + caddc 11089 · cmul 11091 − cmin 11423 -cneg 11424 sincsin 16036 cosccos 16037 πcpi 16039 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-inf2 9612 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 ax-addf 11165 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-iin 4966 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-of 7660 df-om 7851 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-er 8682 df-map 8805 df-pm 8806 df-ixp 8875 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fsupp 9331 df-fi 9380 df-sup 9411 df-inf 9412 df-oi 9481 df-card 9910 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-z 12546 df-dec 12666 df-uz 12810 df-q 12922 df-rp 12966 df-xneg 13085 df-xadd 13086 df-xmul 13087 df-ioo 13323 df-ioc 13324 df-ico 13325 df-icc 13326 df-fz 13482 df-fzo 13629 df-fl 13766 df-seq 13977 df-exp 14037 df-fac 14249 df-bc 14278 df-hash 14306 df-shft 15043 df-cj 15075 df-re 15076 df-im 15077 df-sqrt 15211 df-abs 15212 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-ef 16040 df-sin 16042 df-cos 16043 df-pi 16045 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-rest 17391 df-topn 17392 df-0g 17410 df-gsum 17411 df-topgen 17412 df-pt 17413 df-prds 17416 df-xrs 17471 df-qtop 17476 df-imas 17477 df-xps 17479 df-mre 17553 df-mrc 17554 df-acs 17556 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18717 df-mulg 19006 df-cntz 19255 df-cmn 19718 df-psmet 21262 df-xmet 21263 df-met 21264 df-bl 21265 df-mopn 21266 df-fbas 21267 df-fg 21268 df-cnfld 21271 df-top 22787 df-topon 22804 df-topsp 22826 df-bases 22839 df-cld 22912 df-ntr 22913 df-cls 22914 df-nei 22991 df-lp 23029 df-perf 23030 df-cn 23120 df-cnp 23121 df-haus 23208 df-tx 23455 df-hmeo 23648 df-fil 23739 df-fm 23831 df-flim 23832 df-flf 23833 df-xms 24214 df-ms 24215 df-tms 24216 df-cncf 24777 df-limc 25774 df-dv 25775 |
| This theorem is referenced by: efimpi 26407 ptolemy 26412 cospim 42331 |
| Copyright terms: Public domain | W3C validator |