MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfect Structured version   Visualization version   GIF version

Theorem perfect 25412
Description: The Euclid-Euler theorem, or Perfect Number theorem. A positive even integer 𝑁 is a perfect number (that is, its divisor sum is 2𝑁) if and only if it is of the form 2↑(𝑝 − 1) · (2↑𝑝 − 1), where 2↑𝑝 − 1 is prime (a Mersenne prime). (It follows from this that 𝑝 is also prime.) This is Metamath 100 proof #70. (Contributed by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
perfect ((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) → ((1 σ 𝑁) = (2 · 𝑁) ↔ ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)))))
Distinct variable group:   𝑁,𝑝

Proof of Theorem perfect
StepHypRef Expression
1 simplr 759 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → 2 ∥ 𝑁)
2 2prm 15814 . . . . . . . 8 2 ∈ ℙ
3 simpll 757 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → 𝑁 ∈ ℕ)
4 pcelnn 15982 . . . . . . . 8 ((2 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((2 pCnt 𝑁) ∈ ℕ ↔ 2 ∥ 𝑁))
52, 3, 4sylancr 581 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((2 pCnt 𝑁) ∈ ℕ ↔ 2 ∥ 𝑁))
61, 5mpbird 249 . . . . . 6 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2 pCnt 𝑁) ∈ ℕ)
76nnzd 11837 . . . . 5 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2 pCnt 𝑁) ∈ ℤ)
87peano2zd 11841 . . . 4 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((2 pCnt 𝑁) + 1) ∈ ℤ)
9 pcdvds 15976 . . . . . . . . 9 ((2 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (2↑(2 pCnt 𝑁)) ∥ 𝑁)
102, 3, 9sylancr 581 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2↑(2 pCnt 𝑁)) ∥ 𝑁)
11 2nn 11452 . . . . . . . . . 10 2 ∈ ℕ
126nnnn0d 11706 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2 pCnt 𝑁) ∈ ℕ0)
13 nnexpcl 13195 . . . . . . . . . 10 ((2 ∈ ℕ ∧ (2 pCnt 𝑁) ∈ ℕ0) → (2↑(2 pCnt 𝑁)) ∈ ℕ)
1411, 12, 13sylancr 581 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2↑(2 pCnt 𝑁)) ∈ ℕ)
15 nndivdvds 15400 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (2↑(2 pCnt 𝑁)) ∈ ℕ) → ((2↑(2 pCnt 𝑁)) ∥ 𝑁 ↔ (𝑁 / (2↑(2 pCnt 𝑁))) ∈ ℕ))
163, 14, 15syl2anc 579 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((2↑(2 pCnt 𝑁)) ∥ 𝑁 ↔ (𝑁 / (2↑(2 pCnt 𝑁))) ∈ ℕ))
1710, 16mpbid 224 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (𝑁 / (2↑(2 pCnt 𝑁))) ∈ ℕ)
18 pcndvds2 15980 . . . . . . . 8 ((2 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ¬ 2 ∥ (𝑁 / (2↑(2 pCnt 𝑁))))
192, 3, 18sylancr 581 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ¬ 2 ∥ (𝑁 / (2↑(2 pCnt 𝑁))))
20 simpr 479 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (1 σ 𝑁) = (2 · 𝑁))
21 nncn 11387 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2221ad2antrr 716 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → 𝑁 ∈ ℂ)
2314nncnd 11396 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2↑(2 pCnt 𝑁)) ∈ ℂ)
2414nnne0d 11429 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2↑(2 pCnt 𝑁)) ≠ 0)
2522, 23, 24divcan2d 11155 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((2↑(2 pCnt 𝑁)) · (𝑁 / (2↑(2 pCnt 𝑁)))) = 𝑁)
2625oveq2d 6940 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (1 σ ((2↑(2 pCnt 𝑁)) · (𝑁 / (2↑(2 pCnt 𝑁))))) = (1 σ 𝑁))
2725oveq2d 6940 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2 · ((2↑(2 pCnt 𝑁)) · (𝑁 / (2↑(2 pCnt 𝑁))))) = (2 · 𝑁))
2820, 26, 273eqtr4d 2824 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (1 σ ((2↑(2 pCnt 𝑁)) · (𝑁 / (2↑(2 pCnt 𝑁))))) = (2 · ((2↑(2 pCnt 𝑁)) · (𝑁 / (2↑(2 pCnt 𝑁))))))
296, 17, 19, 28perfectlem2 25411 . . . . . 6 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((𝑁 / (2↑(2 pCnt 𝑁))) ∈ ℙ ∧ (𝑁 / (2↑(2 pCnt 𝑁))) = ((2↑((2 pCnt 𝑁) + 1)) − 1)))
3029simprd 491 . . . . 5 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (𝑁 / (2↑(2 pCnt 𝑁))) = ((2↑((2 pCnt 𝑁) + 1)) − 1))
3129simpld 490 . . . . 5 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (𝑁 / (2↑(2 pCnt 𝑁))) ∈ ℙ)
3230, 31eqeltrrd 2860 . . . 4 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((2↑((2 pCnt 𝑁) + 1)) − 1) ∈ ℙ)
336nncnd 11396 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2 pCnt 𝑁) ∈ ℂ)
34 ax-1cn 10332 . . . . . . . . 9 1 ∈ ℂ
35 pncan 10630 . . . . . . . . 9 (((2 pCnt 𝑁) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 pCnt 𝑁) + 1) − 1) = (2 pCnt 𝑁))
3633, 34, 35sylancl 580 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (((2 pCnt 𝑁) + 1) − 1) = (2 pCnt 𝑁))
3736eqcomd 2784 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2 pCnt 𝑁) = (((2 pCnt 𝑁) + 1) − 1))
3837oveq2d 6940 . . . . . 6 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2↑(2 pCnt 𝑁)) = (2↑(((2 pCnt 𝑁) + 1) − 1)))
3938, 30oveq12d 6942 . . . . 5 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((2↑(2 pCnt 𝑁)) · (𝑁 / (2↑(2 pCnt 𝑁)))) = ((2↑(((2 pCnt 𝑁) + 1) − 1)) · ((2↑((2 pCnt 𝑁) + 1)) − 1)))
4025, 39eqtr3d 2816 . . . 4 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → 𝑁 = ((2↑(((2 pCnt 𝑁) + 1) − 1)) · ((2↑((2 pCnt 𝑁) + 1)) − 1)))
41 oveq2 6932 . . . . . . . 8 (𝑝 = ((2 pCnt 𝑁) + 1) → (2↑𝑝) = (2↑((2 pCnt 𝑁) + 1)))
4241oveq1d 6939 . . . . . . 7 (𝑝 = ((2 pCnt 𝑁) + 1) → ((2↑𝑝) − 1) = ((2↑((2 pCnt 𝑁) + 1)) − 1))
4342eleq1d 2844 . . . . . 6 (𝑝 = ((2 pCnt 𝑁) + 1) → (((2↑𝑝) − 1) ∈ ℙ ↔ ((2↑((2 pCnt 𝑁) + 1)) − 1) ∈ ℙ))
44 oveq1 6931 . . . . . . . . 9 (𝑝 = ((2 pCnt 𝑁) + 1) → (𝑝 − 1) = (((2 pCnt 𝑁) + 1) − 1))
4544oveq2d 6940 . . . . . . . 8 (𝑝 = ((2 pCnt 𝑁) + 1) → (2↑(𝑝 − 1)) = (2↑(((2 pCnt 𝑁) + 1) − 1)))
4645, 42oveq12d 6942 . . . . . . 7 (𝑝 = ((2 pCnt 𝑁) + 1) → ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)) = ((2↑(((2 pCnt 𝑁) + 1) − 1)) · ((2↑((2 pCnt 𝑁) + 1)) − 1)))
4746eqeq2d 2788 . . . . . 6 (𝑝 = ((2 pCnt 𝑁) + 1) → (𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)) ↔ 𝑁 = ((2↑(((2 pCnt 𝑁) + 1) − 1)) · ((2↑((2 pCnt 𝑁) + 1)) − 1))))
4843, 47anbi12d 624 . . . . 5 (𝑝 = ((2 pCnt 𝑁) + 1) → ((((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))) ↔ (((2↑((2 pCnt 𝑁) + 1)) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(((2 pCnt 𝑁) + 1) − 1)) · ((2↑((2 pCnt 𝑁) + 1)) − 1)))))
4948rspcev 3511 . . . 4 ((((2 pCnt 𝑁) + 1) ∈ ℤ ∧ (((2↑((2 pCnt 𝑁) + 1)) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(((2 pCnt 𝑁) + 1) − 1)) · ((2↑((2 pCnt 𝑁) + 1)) − 1)))) → ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))
508, 32, 40, 49syl12anc 827 . . 3 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))
5150ex 403 . 2 ((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) → ((1 σ 𝑁) = (2 · 𝑁) → ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)))))
52 perfect1 25409 . . . . . 6 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (1 σ ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))) = ((2↑𝑝) · ((2↑𝑝) − 1)))
53 2cn 11454 . . . . . . . . 9 2 ∈ ℂ
54 mersenne 25408 . . . . . . . . . 10 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → 𝑝 ∈ ℙ)
55 prmnn 15797 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
5654, 55syl 17 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → 𝑝 ∈ ℕ)
57 expm1t 13210 . . . . . . . . 9 ((2 ∈ ℂ ∧ 𝑝 ∈ ℕ) → (2↑𝑝) = ((2↑(𝑝 − 1)) · 2))
5853, 56, 57sylancr 581 . . . . . . . 8 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (2↑𝑝) = ((2↑(𝑝 − 1)) · 2))
59 nnm1nn0 11689 . . . . . . . . . . 11 (𝑝 ∈ ℕ → (𝑝 − 1) ∈ ℕ0)
6056, 59syl 17 . . . . . . . . . 10 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (𝑝 − 1) ∈ ℕ0)
61 expcl 13200 . . . . . . . . . 10 ((2 ∈ ℂ ∧ (𝑝 − 1) ∈ ℕ0) → (2↑(𝑝 − 1)) ∈ ℂ)
6253, 60, 61sylancr 581 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (2↑(𝑝 − 1)) ∈ ℂ)
63 mulcom 10360 . . . . . . . . 9 (((2↑(𝑝 − 1)) ∈ ℂ ∧ 2 ∈ ℂ) → ((2↑(𝑝 − 1)) · 2) = (2 · (2↑(𝑝 − 1))))
6462, 53, 63sylancl 580 . . . . . . . 8 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → ((2↑(𝑝 − 1)) · 2) = (2 · (2↑(𝑝 − 1))))
6558, 64eqtrd 2814 . . . . . . 7 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (2↑𝑝) = (2 · (2↑(𝑝 − 1))))
6665oveq1d 6939 . . . . . 6 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → ((2↑𝑝) · ((2↑𝑝) − 1)) = ((2 · (2↑(𝑝 − 1))) · ((2↑𝑝) − 1)))
67 2cnd 11457 . . . . . . 7 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → 2 ∈ ℂ)
68 prmnn 15797 . . . . . . . . 9 (((2↑𝑝) − 1) ∈ ℙ → ((2↑𝑝) − 1) ∈ ℕ)
6968adantl 475 . . . . . . . 8 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → ((2↑𝑝) − 1) ∈ ℕ)
7069nncnd 11396 . . . . . . 7 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → ((2↑𝑝) − 1) ∈ ℂ)
7167, 62, 70mulassd 10402 . . . . . 6 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → ((2 · (2↑(𝑝 − 1))) · ((2↑𝑝) − 1)) = (2 · ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))
7252, 66, 713eqtrd 2818 . . . . 5 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (1 σ ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))) = (2 · ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))
73 oveq2 6932 . . . . . 6 (𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)) → (1 σ 𝑁) = (1 σ ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))
74 oveq2 6932 . . . . . 6 (𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)) → (2 · 𝑁) = (2 · ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))
7573, 74eqeq12d 2793 . . . . 5 (𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)) → ((1 σ 𝑁) = (2 · 𝑁) ↔ (1 σ ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))) = (2 · ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)))))
7672, 75syl5ibrcom 239 . . . 4 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)) → (1 σ 𝑁) = (2 · 𝑁)))
7776impr 448 . . 3 ((𝑝 ∈ ℤ ∧ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)))) → (1 σ 𝑁) = (2 · 𝑁))
7877rexlimiva 3210 . 2 (∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))) → (1 σ 𝑁) = (2 · 𝑁))
7951, 78impbid1 217 1 ((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) → ((1 σ 𝑁) = (2 · 𝑁) ↔ ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  wrex 3091   class class class wbr 4888  (class class class)co 6924  cc 10272  1c1 10275   + caddc 10277   · cmul 10279  cmin 10608   / cdiv 11034  cn 11378  2c2 11434  0cn0 11646  cz 11732  cexp 13182  cdvds 15391  cprime 15794   pCnt cpc 15949   σ csgm 25278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352  ax-addf 10353  ax-mulf 10354
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-iin 4758  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-1st 7447  df-2nd 7448  df-supp 7579  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-2o 7846  df-oadd 7849  df-er 8028  df-map 8144  df-pm 8145  df-ixp 8197  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fsupp 8566  df-fi 8607  df-sup 8638  df-inf 8639  df-oi 8706  df-card 9100  df-cda 9327  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035  df-nn 11379  df-2 11442  df-3 11443  df-4 11444  df-5 11445  df-6 11446  df-7 11447  df-8 11448  df-9 11449  df-n0 11647  df-z 11733  df-dec 11850  df-uz 11997  df-q 12100  df-rp 12142  df-xneg 12261  df-xadd 12262  df-xmul 12263  df-ioo 12495  df-ioc 12496  df-ico 12497  df-icc 12498  df-fz 12648  df-fzo 12789  df-fl 12916  df-mod 12992  df-seq 13124  df-exp 13183  df-fac 13383  df-bc 13412  df-hash 13440  df-shft 14218  df-cj 14250  df-re 14251  df-im 14252  df-sqrt 14386  df-abs 14387  df-limsup 14614  df-clim 14631  df-rlim 14632  df-sum 14829  df-ef 15204  df-sin 15206  df-cos 15207  df-pi 15209  df-dvds 15392  df-gcd 15627  df-prm 15795  df-pc 15950  df-struct 16261  df-ndx 16262  df-slot 16263  df-base 16265  df-sets 16266  df-ress 16267  df-plusg 16355  df-mulr 16356  df-starv 16357  df-sca 16358  df-vsca 16359  df-ip 16360  df-tset 16361  df-ple 16362  df-ds 16364  df-unif 16365  df-hom 16366  df-cco 16367  df-rest 16473  df-topn 16474  df-0g 16492  df-gsum 16493  df-topgen 16494  df-pt 16495  df-prds 16498  df-xrs 16552  df-qtop 16557  df-imas 16558  df-xps 16560  df-mre 16636  df-mrc 16637  df-acs 16639  df-mgm 17632  df-sgrp 17674  df-mnd 17685  df-submnd 17726  df-mulg 17932  df-cntz 18137  df-cmn 18585  df-psmet 20138  df-xmet 20139  df-met 20140  df-bl 20141  df-mopn 20142  df-fbas 20143  df-fg 20144  df-cnfld 20147  df-top 21110  df-topon 21127  df-topsp 21149  df-bases 21162  df-cld 21235  df-ntr 21236  df-cls 21237  df-nei 21314  df-lp 21352  df-perf 21353  df-cn 21443  df-cnp 21444  df-haus 21531  df-tx 21778  df-hmeo 21971  df-fil 22062  df-fm 22154  df-flim 22155  df-flf 22156  df-xms 22537  df-ms 22538  df-tms 22539  df-cncf 23093  df-limc 24071  df-dv 24072  df-log 24744  df-cxp 24745  df-sgm 25284
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator