MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfect Structured version   Visualization version   GIF version

Theorem perfect 25967
Description: The Euclid-Euler theorem, or Perfect Number theorem. A positive even integer 𝑁 is a perfect number (that is, its divisor sum is 2𝑁) if and only if it is of the form 2↑(𝑝 − 1) · (2↑𝑝 − 1), where 2↑𝑝 − 1 is prime (a Mersenne prime). (It follows from this that 𝑝 is also prime.) This is Metamath 100 proof #70. (Contributed by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
perfect ((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) → ((1 σ 𝑁) = (2 · 𝑁) ↔ ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)))))
Distinct variable group:   𝑁,𝑝

Proof of Theorem perfect
StepHypRef Expression
1 simplr 769 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → 2 ∥ 𝑁)
2 2prm 16133 . . . . . . . 8 2 ∈ ℙ
3 simpll 767 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → 𝑁 ∈ ℕ)
4 pcelnn 16306 . . . . . . . 8 ((2 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((2 pCnt 𝑁) ∈ ℕ ↔ 2 ∥ 𝑁))
52, 3, 4sylancr 590 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((2 pCnt 𝑁) ∈ ℕ ↔ 2 ∥ 𝑁))
61, 5mpbird 260 . . . . . 6 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2 pCnt 𝑁) ∈ ℕ)
76nnzd 12167 . . . . 5 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2 pCnt 𝑁) ∈ ℤ)
87peano2zd 12171 . . . 4 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((2 pCnt 𝑁) + 1) ∈ ℤ)
9 pcdvds 16300 . . . . . . . . 9 ((2 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (2↑(2 pCnt 𝑁)) ∥ 𝑁)
102, 3, 9sylancr 590 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2↑(2 pCnt 𝑁)) ∥ 𝑁)
11 2nn 11789 . . . . . . . . . 10 2 ∈ ℕ
126nnnn0d 12036 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2 pCnt 𝑁) ∈ ℕ0)
13 nnexpcl 13534 . . . . . . . . . 10 ((2 ∈ ℕ ∧ (2 pCnt 𝑁) ∈ ℕ0) → (2↑(2 pCnt 𝑁)) ∈ ℕ)
1411, 12, 13sylancr 590 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2↑(2 pCnt 𝑁)) ∈ ℕ)
15 nndivdvds 15708 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (2↑(2 pCnt 𝑁)) ∈ ℕ) → ((2↑(2 pCnt 𝑁)) ∥ 𝑁 ↔ (𝑁 / (2↑(2 pCnt 𝑁))) ∈ ℕ))
163, 14, 15syl2anc 587 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((2↑(2 pCnt 𝑁)) ∥ 𝑁 ↔ (𝑁 / (2↑(2 pCnt 𝑁))) ∈ ℕ))
1710, 16mpbid 235 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (𝑁 / (2↑(2 pCnt 𝑁))) ∈ ℕ)
18 pcndvds2 16304 . . . . . . . 8 ((2 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ¬ 2 ∥ (𝑁 / (2↑(2 pCnt 𝑁))))
192, 3, 18sylancr 590 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ¬ 2 ∥ (𝑁 / (2↑(2 pCnt 𝑁))))
20 simpr 488 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (1 σ 𝑁) = (2 · 𝑁))
21 nncn 11724 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2221ad2antrr 726 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → 𝑁 ∈ ℂ)
2314nncnd 11732 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2↑(2 pCnt 𝑁)) ∈ ℂ)
2414nnne0d 11766 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2↑(2 pCnt 𝑁)) ≠ 0)
2522, 23, 24divcan2d 11496 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((2↑(2 pCnt 𝑁)) · (𝑁 / (2↑(2 pCnt 𝑁)))) = 𝑁)
2625oveq2d 7186 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (1 σ ((2↑(2 pCnt 𝑁)) · (𝑁 / (2↑(2 pCnt 𝑁))))) = (1 σ 𝑁))
2725oveq2d 7186 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2 · ((2↑(2 pCnt 𝑁)) · (𝑁 / (2↑(2 pCnt 𝑁))))) = (2 · 𝑁))
2820, 26, 273eqtr4d 2783 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (1 σ ((2↑(2 pCnt 𝑁)) · (𝑁 / (2↑(2 pCnt 𝑁))))) = (2 · ((2↑(2 pCnt 𝑁)) · (𝑁 / (2↑(2 pCnt 𝑁))))))
296, 17, 19, 28perfectlem2 25966 . . . . . 6 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((𝑁 / (2↑(2 pCnt 𝑁))) ∈ ℙ ∧ (𝑁 / (2↑(2 pCnt 𝑁))) = ((2↑((2 pCnt 𝑁) + 1)) − 1)))
3029simprd 499 . . . . 5 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (𝑁 / (2↑(2 pCnt 𝑁))) = ((2↑((2 pCnt 𝑁) + 1)) − 1))
3129simpld 498 . . . . 5 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (𝑁 / (2↑(2 pCnt 𝑁))) ∈ ℙ)
3230, 31eqeltrrd 2834 . . . 4 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((2↑((2 pCnt 𝑁) + 1)) − 1) ∈ ℙ)
336nncnd 11732 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2 pCnt 𝑁) ∈ ℂ)
34 ax-1cn 10673 . . . . . . . . 9 1 ∈ ℂ
35 pncan 10970 . . . . . . . . 9 (((2 pCnt 𝑁) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 pCnt 𝑁) + 1) − 1) = (2 pCnt 𝑁))
3633, 34, 35sylancl 589 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (((2 pCnt 𝑁) + 1) − 1) = (2 pCnt 𝑁))
3736eqcomd 2744 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2 pCnt 𝑁) = (((2 pCnt 𝑁) + 1) − 1))
3837oveq2d 7186 . . . . . 6 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2↑(2 pCnt 𝑁)) = (2↑(((2 pCnt 𝑁) + 1) − 1)))
3938, 30oveq12d 7188 . . . . 5 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((2↑(2 pCnt 𝑁)) · (𝑁 / (2↑(2 pCnt 𝑁)))) = ((2↑(((2 pCnt 𝑁) + 1) − 1)) · ((2↑((2 pCnt 𝑁) + 1)) − 1)))
4025, 39eqtr3d 2775 . . . 4 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → 𝑁 = ((2↑(((2 pCnt 𝑁) + 1) − 1)) · ((2↑((2 pCnt 𝑁) + 1)) − 1)))
41 oveq2 7178 . . . . . . . 8 (𝑝 = ((2 pCnt 𝑁) + 1) → (2↑𝑝) = (2↑((2 pCnt 𝑁) + 1)))
4241oveq1d 7185 . . . . . . 7 (𝑝 = ((2 pCnt 𝑁) + 1) → ((2↑𝑝) − 1) = ((2↑((2 pCnt 𝑁) + 1)) − 1))
4342eleq1d 2817 . . . . . 6 (𝑝 = ((2 pCnt 𝑁) + 1) → (((2↑𝑝) − 1) ∈ ℙ ↔ ((2↑((2 pCnt 𝑁) + 1)) − 1) ∈ ℙ))
44 oveq1 7177 . . . . . . . . 9 (𝑝 = ((2 pCnt 𝑁) + 1) → (𝑝 − 1) = (((2 pCnt 𝑁) + 1) − 1))
4544oveq2d 7186 . . . . . . . 8 (𝑝 = ((2 pCnt 𝑁) + 1) → (2↑(𝑝 − 1)) = (2↑(((2 pCnt 𝑁) + 1) − 1)))
4645, 42oveq12d 7188 . . . . . . 7 (𝑝 = ((2 pCnt 𝑁) + 1) → ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)) = ((2↑(((2 pCnt 𝑁) + 1) − 1)) · ((2↑((2 pCnt 𝑁) + 1)) − 1)))
4746eqeq2d 2749 . . . . . 6 (𝑝 = ((2 pCnt 𝑁) + 1) → (𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)) ↔ 𝑁 = ((2↑(((2 pCnt 𝑁) + 1) − 1)) · ((2↑((2 pCnt 𝑁) + 1)) − 1))))
4843, 47anbi12d 634 . . . . 5 (𝑝 = ((2 pCnt 𝑁) + 1) → ((((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))) ↔ (((2↑((2 pCnt 𝑁) + 1)) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(((2 pCnt 𝑁) + 1) − 1)) · ((2↑((2 pCnt 𝑁) + 1)) − 1)))))
4948rspcev 3526 . . . 4 ((((2 pCnt 𝑁) + 1) ∈ ℤ ∧ (((2↑((2 pCnt 𝑁) + 1)) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(((2 pCnt 𝑁) + 1) − 1)) · ((2↑((2 pCnt 𝑁) + 1)) − 1)))) → ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))
508, 32, 40, 49syl12anc 836 . . 3 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))
5150ex 416 . 2 ((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) → ((1 σ 𝑁) = (2 · 𝑁) → ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)))))
52 perfect1 25964 . . . . . 6 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (1 σ ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))) = ((2↑𝑝) · ((2↑𝑝) − 1)))
53 2cn 11791 . . . . . . . . 9 2 ∈ ℂ
54 mersenne 25963 . . . . . . . . . 10 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → 𝑝 ∈ ℙ)
55 prmnn 16115 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
5654, 55syl 17 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → 𝑝 ∈ ℕ)
57 expm1t 13549 . . . . . . . . 9 ((2 ∈ ℂ ∧ 𝑝 ∈ ℕ) → (2↑𝑝) = ((2↑(𝑝 − 1)) · 2))
5853, 56, 57sylancr 590 . . . . . . . 8 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (2↑𝑝) = ((2↑(𝑝 − 1)) · 2))
59 nnm1nn0 12017 . . . . . . . . . . 11 (𝑝 ∈ ℕ → (𝑝 − 1) ∈ ℕ0)
6056, 59syl 17 . . . . . . . . . 10 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (𝑝 − 1) ∈ ℕ0)
61 expcl 13539 . . . . . . . . . 10 ((2 ∈ ℂ ∧ (𝑝 − 1) ∈ ℕ0) → (2↑(𝑝 − 1)) ∈ ℂ)
6253, 60, 61sylancr 590 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (2↑(𝑝 − 1)) ∈ ℂ)
63 mulcom 10701 . . . . . . . . 9 (((2↑(𝑝 − 1)) ∈ ℂ ∧ 2 ∈ ℂ) → ((2↑(𝑝 − 1)) · 2) = (2 · (2↑(𝑝 − 1))))
6462, 53, 63sylancl 589 . . . . . . . 8 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → ((2↑(𝑝 − 1)) · 2) = (2 · (2↑(𝑝 − 1))))
6558, 64eqtrd 2773 . . . . . . 7 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (2↑𝑝) = (2 · (2↑(𝑝 − 1))))
6665oveq1d 7185 . . . . . 6 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → ((2↑𝑝) · ((2↑𝑝) − 1)) = ((2 · (2↑(𝑝 − 1))) · ((2↑𝑝) − 1)))
67 2cnd 11794 . . . . . . 7 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → 2 ∈ ℂ)
68 prmnn 16115 . . . . . . . . 9 (((2↑𝑝) − 1) ∈ ℙ → ((2↑𝑝) − 1) ∈ ℕ)
6968adantl 485 . . . . . . . 8 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → ((2↑𝑝) − 1) ∈ ℕ)
7069nncnd 11732 . . . . . . 7 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → ((2↑𝑝) − 1) ∈ ℂ)
7167, 62, 70mulassd 10742 . . . . . 6 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → ((2 · (2↑(𝑝 − 1))) · ((2↑𝑝) − 1)) = (2 · ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))
7252, 66, 713eqtrd 2777 . . . . 5 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (1 σ ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))) = (2 · ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))
73 oveq2 7178 . . . . . 6 (𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)) → (1 σ 𝑁) = (1 σ ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))
74 oveq2 7178 . . . . . 6 (𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)) → (2 · 𝑁) = (2 · ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))
7573, 74eqeq12d 2754 . . . . 5 (𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)) → ((1 σ 𝑁) = (2 · 𝑁) ↔ (1 σ ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))) = (2 · ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)))))
7672, 75syl5ibrcom 250 . . . 4 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)) → (1 σ 𝑁) = (2 · 𝑁)))
7776impr 458 . . 3 ((𝑝 ∈ ℤ ∧ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)))) → (1 σ 𝑁) = (2 · 𝑁))
7877rexlimiva 3191 . 2 (∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))) → (1 σ 𝑁) = (2 · 𝑁))
7951, 78impbid1 228 1 ((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) → ((1 σ 𝑁) = (2 · 𝑁) ↔ ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wrex 3054   class class class wbr 5030  (class class class)co 7170  cc 10613  1c1 10616   + caddc 10618   · cmul 10620  cmin 10948   / cdiv 11375  cn 11716  2c2 11771  0cn0 11976  cz 12062  cexp 13521  cdvds 15699  cprime 16112   pCnt cpc 16273   σ csgm 25833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-inf2 9177  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693  ax-addf 10694  ax-mulf 10695
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-om 7600  df-1st 7714  df-2nd 7715  df-supp 7857  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-2o 8132  df-er 8320  df-map 8439  df-pm 8440  df-ixp 8508  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-fsupp 8907  df-fi 8948  df-sup 8979  df-inf 8980  df-oi 9047  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-z 12063  df-dec 12180  df-uz 12325  df-q 12431  df-rp 12473  df-xneg 12590  df-xadd 12591  df-xmul 12592  df-ioo 12825  df-ioc 12826  df-ico 12827  df-icc 12828  df-fz 12982  df-fzo 13125  df-fl 13253  df-mod 13329  df-seq 13461  df-exp 13522  df-fac 13726  df-bc 13755  df-hash 13783  df-shft 14516  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-limsup 14918  df-clim 14935  df-rlim 14936  df-sum 15136  df-ef 15513  df-sin 15515  df-cos 15516  df-pi 15518  df-dvds 15700  df-gcd 15938  df-prm 16113  df-pc 16274  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-starv 16683  df-sca 16684  df-vsca 16685  df-ip 16686  df-tset 16687  df-ple 16688  df-ds 16690  df-unif 16691  df-hom 16692  df-cco 16693  df-rest 16799  df-topn 16800  df-0g 16818  df-gsum 16819  df-topgen 16820  df-pt 16821  df-prds 16824  df-xrs 16878  df-qtop 16883  df-imas 16884  df-xps 16886  df-mre 16960  df-mrc 16961  df-acs 16963  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-submnd 18073  df-mulg 18343  df-cntz 18565  df-cmn 19026  df-psmet 20209  df-xmet 20210  df-met 20211  df-bl 20212  df-mopn 20213  df-fbas 20214  df-fg 20215  df-cnfld 20218  df-top 21645  df-topon 21662  df-topsp 21684  df-bases 21697  df-cld 21770  df-ntr 21771  df-cls 21772  df-nei 21849  df-lp 21887  df-perf 21888  df-cn 21978  df-cnp 21979  df-haus 22066  df-tx 22313  df-hmeo 22506  df-fil 22597  df-fm 22689  df-flim 22690  df-flf 22691  df-xms 23073  df-ms 23074  df-tms 23075  df-cncf 23630  df-limc 24618  df-dv 24619  df-log 25300  df-cxp 25301  df-sgm 25839
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator