MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfect Structured version   Visualization version   GIF version

Theorem perfect 26492
Description: The Euclid-Euler theorem, or Perfect Number theorem. A positive even integer 𝑁 is a perfect number (that is, its divisor sum is 2𝑁) if and only if it is of the form 2↑(𝑝 − 1) · (2↑𝑝 − 1), where 2↑𝑝 − 1 is prime (a Mersenne prime). (It follows from this that 𝑝 is also prime.) This is Metamath 100 proof #70. (Contributed by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
perfect ((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) → ((1 σ 𝑁) = (2 · 𝑁) ↔ ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)))))
Distinct variable group:   𝑁,𝑝

Proof of Theorem perfect
StepHypRef Expression
1 simplr 767 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → 2 ∥ 𝑁)
2 2prm 16502 . . . . . . . 8 2 ∈ ℙ
3 simpll 765 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → 𝑁 ∈ ℕ)
4 pcelnn 16676 . . . . . . . 8 ((2 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((2 pCnt 𝑁) ∈ ℕ ↔ 2 ∥ 𝑁))
52, 3, 4sylancr 588 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((2 pCnt 𝑁) ∈ ℕ ↔ 2 ∥ 𝑁))
61, 5mpbird 257 . . . . . 6 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2 pCnt 𝑁) ∈ ℕ)
76nnzd 12538 . . . . 5 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2 pCnt 𝑁) ∈ ℤ)
87peano2zd 12542 . . . 4 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((2 pCnt 𝑁) + 1) ∈ ℤ)
9 pcdvds 16670 . . . . . . . . 9 ((2 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (2↑(2 pCnt 𝑁)) ∥ 𝑁)
102, 3, 9sylancr 588 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2↑(2 pCnt 𝑁)) ∥ 𝑁)
11 2nn 12159 . . . . . . . . . 10 2 ∈ ℕ
126nnnn0d 12406 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2 pCnt 𝑁) ∈ ℕ0)
13 nnexpcl 13908 . . . . . . . . . 10 ((2 ∈ ℕ ∧ (2 pCnt 𝑁) ∈ ℕ0) → (2↑(2 pCnt 𝑁)) ∈ ℕ)
1411, 12, 13sylancr 588 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2↑(2 pCnt 𝑁)) ∈ ℕ)
15 nndivdvds 16079 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (2↑(2 pCnt 𝑁)) ∈ ℕ) → ((2↑(2 pCnt 𝑁)) ∥ 𝑁 ↔ (𝑁 / (2↑(2 pCnt 𝑁))) ∈ ℕ))
163, 14, 15syl2anc 585 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((2↑(2 pCnt 𝑁)) ∥ 𝑁 ↔ (𝑁 / (2↑(2 pCnt 𝑁))) ∈ ℕ))
1710, 16mpbid 231 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (𝑁 / (2↑(2 pCnt 𝑁))) ∈ ℕ)
18 pcndvds2 16674 . . . . . . . 8 ((2 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ¬ 2 ∥ (𝑁 / (2↑(2 pCnt 𝑁))))
192, 3, 18sylancr 588 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ¬ 2 ∥ (𝑁 / (2↑(2 pCnt 𝑁))))
20 simpr 486 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (1 σ 𝑁) = (2 · 𝑁))
21 nncn 12094 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2221ad2antrr 724 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → 𝑁 ∈ ℂ)
2314nncnd 12102 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2↑(2 pCnt 𝑁)) ∈ ℂ)
2414nnne0d 12136 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2↑(2 pCnt 𝑁)) ≠ 0)
2522, 23, 24divcan2d 11866 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((2↑(2 pCnt 𝑁)) · (𝑁 / (2↑(2 pCnt 𝑁)))) = 𝑁)
2625oveq2d 7365 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (1 σ ((2↑(2 pCnt 𝑁)) · (𝑁 / (2↑(2 pCnt 𝑁))))) = (1 σ 𝑁))
2725oveq2d 7365 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2 · ((2↑(2 pCnt 𝑁)) · (𝑁 / (2↑(2 pCnt 𝑁))))) = (2 · 𝑁))
2820, 26, 273eqtr4d 2787 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (1 σ ((2↑(2 pCnt 𝑁)) · (𝑁 / (2↑(2 pCnt 𝑁))))) = (2 · ((2↑(2 pCnt 𝑁)) · (𝑁 / (2↑(2 pCnt 𝑁))))))
296, 17, 19, 28perfectlem2 26491 . . . . . 6 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((𝑁 / (2↑(2 pCnt 𝑁))) ∈ ℙ ∧ (𝑁 / (2↑(2 pCnt 𝑁))) = ((2↑((2 pCnt 𝑁) + 1)) − 1)))
3029simprd 497 . . . . 5 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (𝑁 / (2↑(2 pCnt 𝑁))) = ((2↑((2 pCnt 𝑁) + 1)) − 1))
3129simpld 496 . . . . 5 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (𝑁 / (2↑(2 pCnt 𝑁))) ∈ ℙ)
3230, 31eqeltrrd 2839 . . . 4 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((2↑((2 pCnt 𝑁) + 1)) − 1) ∈ ℙ)
336nncnd 12102 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2 pCnt 𝑁) ∈ ℂ)
34 ax-1cn 11042 . . . . . . . . 9 1 ∈ ℂ
35 pncan 11340 . . . . . . . . 9 (((2 pCnt 𝑁) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 pCnt 𝑁) + 1) − 1) = (2 pCnt 𝑁))
3633, 34, 35sylancl 587 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (((2 pCnt 𝑁) + 1) − 1) = (2 pCnt 𝑁))
3736eqcomd 2743 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2 pCnt 𝑁) = (((2 pCnt 𝑁) + 1) − 1))
3837oveq2d 7365 . . . . . 6 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2↑(2 pCnt 𝑁)) = (2↑(((2 pCnt 𝑁) + 1) − 1)))
3938, 30oveq12d 7367 . . . . 5 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((2↑(2 pCnt 𝑁)) · (𝑁 / (2↑(2 pCnt 𝑁)))) = ((2↑(((2 pCnt 𝑁) + 1) − 1)) · ((2↑((2 pCnt 𝑁) + 1)) − 1)))
4025, 39eqtr3d 2779 . . . 4 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → 𝑁 = ((2↑(((2 pCnt 𝑁) + 1) − 1)) · ((2↑((2 pCnt 𝑁) + 1)) − 1)))
41 oveq2 7357 . . . . . . . 8 (𝑝 = ((2 pCnt 𝑁) + 1) → (2↑𝑝) = (2↑((2 pCnt 𝑁) + 1)))
4241oveq1d 7364 . . . . . . 7 (𝑝 = ((2 pCnt 𝑁) + 1) → ((2↑𝑝) − 1) = ((2↑((2 pCnt 𝑁) + 1)) − 1))
4342eleq1d 2822 . . . . . 6 (𝑝 = ((2 pCnt 𝑁) + 1) → (((2↑𝑝) − 1) ∈ ℙ ↔ ((2↑((2 pCnt 𝑁) + 1)) − 1) ∈ ℙ))
44 oveq1 7356 . . . . . . . . 9 (𝑝 = ((2 pCnt 𝑁) + 1) → (𝑝 − 1) = (((2 pCnt 𝑁) + 1) − 1))
4544oveq2d 7365 . . . . . . . 8 (𝑝 = ((2 pCnt 𝑁) + 1) → (2↑(𝑝 − 1)) = (2↑(((2 pCnt 𝑁) + 1) − 1)))
4645, 42oveq12d 7367 . . . . . . 7 (𝑝 = ((2 pCnt 𝑁) + 1) → ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)) = ((2↑(((2 pCnt 𝑁) + 1) − 1)) · ((2↑((2 pCnt 𝑁) + 1)) − 1)))
4746eqeq2d 2748 . . . . . 6 (𝑝 = ((2 pCnt 𝑁) + 1) → (𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)) ↔ 𝑁 = ((2↑(((2 pCnt 𝑁) + 1) − 1)) · ((2↑((2 pCnt 𝑁) + 1)) − 1))))
4843, 47anbi12d 632 . . . . 5 (𝑝 = ((2 pCnt 𝑁) + 1) → ((((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))) ↔ (((2↑((2 pCnt 𝑁) + 1)) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(((2 pCnt 𝑁) + 1) − 1)) · ((2↑((2 pCnt 𝑁) + 1)) − 1)))))
4948rspcev 3579 . . . 4 ((((2 pCnt 𝑁) + 1) ∈ ℤ ∧ (((2↑((2 pCnt 𝑁) + 1)) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(((2 pCnt 𝑁) + 1) − 1)) · ((2↑((2 pCnt 𝑁) + 1)) − 1)))) → ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))
508, 32, 40, 49syl12anc 835 . . 3 (((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))
5150ex 414 . 2 ((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) → ((1 σ 𝑁) = (2 · 𝑁) → ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)))))
52 perfect1 26489 . . . . . 6 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (1 σ ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))) = ((2↑𝑝) · ((2↑𝑝) − 1)))
53 2cn 12161 . . . . . . . . 9 2 ∈ ℂ
54 mersenne 26488 . . . . . . . . . 10 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → 𝑝 ∈ ℙ)
55 prmnn 16484 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
5654, 55syl 17 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → 𝑝 ∈ ℕ)
57 expm1t 13924 . . . . . . . . 9 ((2 ∈ ℂ ∧ 𝑝 ∈ ℕ) → (2↑𝑝) = ((2↑(𝑝 − 1)) · 2))
5853, 56, 57sylancr 588 . . . . . . . 8 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (2↑𝑝) = ((2↑(𝑝 − 1)) · 2))
59 nnm1nn0 12387 . . . . . . . . . . 11 (𝑝 ∈ ℕ → (𝑝 − 1) ∈ ℕ0)
6056, 59syl 17 . . . . . . . . . 10 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (𝑝 − 1) ∈ ℕ0)
61 expcl 13913 . . . . . . . . . 10 ((2 ∈ ℂ ∧ (𝑝 − 1) ∈ ℕ0) → (2↑(𝑝 − 1)) ∈ ℂ)
6253, 60, 61sylancr 588 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (2↑(𝑝 − 1)) ∈ ℂ)
63 mulcom 11070 . . . . . . . . 9 (((2↑(𝑝 − 1)) ∈ ℂ ∧ 2 ∈ ℂ) → ((2↑(𝑝 − 1)) · 2) = (2 · (2↑(𝑝 − 1))))
6462, 53, 63sylancl 587 . . . . . . . 8 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → ((2↑(𝑝 − 1)) · 2) = (2 · (2↑(𝑝 − 1))))
6558, 64eqtrd 2777 . . . . . . 7 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (2↑𝑝) = (2 · (2↑(𝑝 − 1))))
6665oveq1d 7364 . . . . . 6 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → ((2↑𝑝) · ((2↑𝑝) − 1)) = ((2 · (2↑(𝑝 − 1))) · ((2↑𝑝) − 1)))
67 2cnd 12164 . . . . . . 7 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → 2 ∈ ℂ)
68 prmnn 16484 . . . . . . . . 9 (((2↑𝑝) − 1) ∈ ℙ → ((2↑𝑝) − 1) ∈ ℕ)
6968adantl 483 . . . . . . . 8 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → ((2↑𝑝) − 1) ∈ ℕ)
7069nncnd 12102 . . . . . . 7 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → ((2↑𝑝) − 1) ∈ ℂ)
7167, 62, 70mulassd 11111 . . . . . 6 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → ((2 · (2↑(𝑝 − 1))) · ((2↑𝑝) − 1)) = (2 · ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))
7252, 66, 713eqtrd 2781 . . . . 5 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (1 σ ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))) = (2 · ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))
73 oveq2 7357 . . . . . 6 (𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)) → (1 σ 𝑁) = (1 σ ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))
74 oveq2 7357 . . . . . 6 (𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)) → (2 · 𝑁) = (2 · ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))
7573, 74eqeq12d 2753 . . . . 5 (𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)) → ((1 σ 𝑁) = (2 · 𝑁) ↔ (1 σ ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))) = (2 · ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)))))
7672, 75syl5ibrcom 247 . . . 4 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)) → (1 σ 𝑁) = (2 · 𝑁)))
7776impr 456 . . 3 ((𝑝 ∈ ℤ ∧ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)))) → (1 σ 𝑁) = (2 · 𝑁))
7877rexlimiva 3142 . 2 (∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))) → (1 σ 𝑁) = (2 · 𝑁))
7951, 78impbid1 224 1 ((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) → ((1 σ 𝑁) = (2 · 𝑁) ↔ ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1541  wcel 2106  wrex 3071   class class class wbr 5103  (class class class)co 7349  cc 10982  1c1 10985   + caddc 10987   · cmul 10989  cmin 11318   / cdiv 11745  cn 12086  2c2 12141  0cn0 12346  cz 12432  cexp 13895  cdvds 16070  cprime 16481   pCnt cpc 16642   σ csgm 26358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7662  ax-inf2 9510  ax-cnex 11040  ax-resscn 11041  ax-1cn 11042  ax-icn 11043  ax-addcl 11044  ax-addrcl 11045  ax-mulcl 11046  ax-mulrcl 11047  ax-mulcom 11048  ax-addass 11049  ax-mulass 11050  ax-distr 11051  ax-i2m1 11052  ax-1ne0 11053  ax-1rid 11054  ax-rnegex 11055  ax-rrecex 11056  ax-cnre 11057  ax-pre-lttri 11058  ax-pre-lttrn 11059  ax-pre-ltadd 11060  ax-pre-mulgt0 11061  ax-pre-sup 11062  ax-addf 11063  ax-mulf 11064
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-tp 4589  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-iin 4955  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5528  df-eprel 5534  df-po 5542  df-so 5543  df-fr 5585  df-se 5586  df-we 5587  df-xp 5636  df-rel 5637  df-cnv 5638  df-co 5639  df-dm 5640  df-rn 5641  df-res 5642  df-ima 5643  df-pred 6249  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6443  df-fun 6493  df-fn 6494  df-f 6495  df-f1 6496  df-fo 6497  df-f1o 6498  df-fv 6499  df-isom 6500  df-riota 7305  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7607  df-om 7793  df-1st 7911  df-2nd 7912  df-supp 8060  df-frecs 8179  df-wrecs 8210  df-recs 8284  df-rdg 8323  df-1o 8379  df-2o 8380  df-er 8581  df-map 8700  df-pm 8701  df-ixp 8769  df-en 8817  df-dom 8818  df-sdom 8819  df-fin 8820  df-fsupp 9239  df-fi 9280  df-sup 9311  df-inf 9312  df-oi 9379  df-card 9808  df-pnf 11124  df-mnf 11125  df-xr 11126  df-ltxr 11127  df-le 11128  df-sub 11320  df-neg 11321  df-div 11746  df-nn 12087  df-2 12149  df-3 12150  df-4 12151  df-5 12152  df-6 12153  df-7 12154  df-8 12155  df-9 12156  df-n0 12347  df-z 12433  df-dec 12551  df-uz 12696  df-q 12802  df-rp 12844  df-xneg 12961  df-xadd 12962  df-xmul 12963  df-ioo 13196  df-ioc 13197  df-ico 13198  df-icc 13199  df-fz 13353  df-fzo 13496  df-fl 13625  df-mod 13703  df-seq 13835  df-exp 13896  df-fac 14101  df-bc 14130  df-hash 14158  df-shft 14885  df-cj 14917  df-re 14918  df-im 14919  df-sqrt 15053  df-abs 15054  df-limsup 15287  df-clim 15304  df-rlim 15305  df-sum 15505  df-ef 15884  df-sin 15886  df-cos 15887  df-pi 15889  df-dvds 16071  df-gcd 16309  df-prm 16482  df-pc 16643  df-struct 16953  df-sets 16970  df-slot 16988  df-ndx 17000  df-base 17018  df-ress 17047  df-plusg 17080  df-mulr 17081  df-starv 17082  df-sca 17083  df-vsca 17084  df-ip 17085  df-tset 17086  df-ple 17087  df-ds 17089  df-unif 17090  df-hom 17091  df-cco 17092  df-rest 17238  df-topn 17239  df-0g 17257  df-gsum 17258  df-topgen 17259  df-pt 17260  df-prds 17263  df-xrs 17318  df-qtop 17323  df-imas 17324  df-xps 17326  df-mre 17400  df-mrc 17401  df-acs 17403  df-mgm 18431  df-sgrp 18480  df-mnd 18491  df-submnd 18536  df-mulg 18805  df-cntz 19027  df-cmn 19491  df-psmet 20702  df-xmet 20703  df-met 20704  df-bl 20705  df-mopn 20706  df-fbas 20707  df-fg 20708  df-cnfld 20711  df-top 22156  df-topon 22173  df-topsp 22195  df-bases 22209  df-cld 22283  df-ntr 22284  df-cls 22285  df-nei 22362  df-lp 22400  df-perf 22401  df-cn 22491  df-cnp 22492  df-haus 22579  df-tx 22826  df-hmeo 23019  df-fil 23110  df-fm 23202  df-flim 23203  df-flf 23204  df-xms 23586  df-ms 23587  df-tms 23588  df-cncf 24154  df-limc 25143  df-dv 25144  df-log 25825  df-cxp 25826  df-sgm 26364
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator