![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ef2kpi | Structured version Visualization version GIF version |
Description: If 𝐾 is an integer, then the exponential of 2𝐾πi is 1. (Contributed by Mario Carneiro, 9-May-2014.) |
Ref | Expression |
---|---|
ef2kpi | ⊢ (𝐾 ∈ ℤ → (exp‘((i · (2 · π)) · 𝐾)) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn 10392 | . . . . 5 ⊢ i ∈ ℂ | |
2 | 2cn 11513 | . . . . . 6 ⊢ 2 ∈ ℂ | |
3 | picn 24760 | . . . . . 6 ⊢ π ∈ ℂ | |
4 | 2, 3 | mulcli 10445 | . . . . 5 ⊢ (2 · π) ∈ ℂ |
5 | 1, 4 | mulcli 10445 | . . . 4 ⊢ (i · (2 · π)) ∈ ℂ |
6 | zcn 11796 | . . . 4 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℂ) | |
7 | mulcom 10419 | . . . 4 ⊢ (((i · (2 · π)) ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((i · (2 · π)) · 𝐾) = (𝐾 · (i · (2 · π)))) | |
8 | 5, 6, 7 | sylancr 578 | . . 3 ⊢ (𝐾 ∈ ℤ → ((i · (2 · π)) · 𝐾) = (𝐾 · (i · (2 · π)))) |
9 | 8 | fveq2d 6500 | . 2 ⊢ (𝐾 ∈ ℤ → (exp‘((i · (2 · π)) · 𝐾)) = (exp‘(𝐾 · (i · (2 · π))))) |
10 | efexp 15312 | . . 3 ⊢ (((i · (2 · π)) ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(𝐾 · (i · (2 · π)))) = ((exp‘(i · (2 · π)))↑𝐾)) | |
11 | 5, 10 | mpan 677 | . 2 ⊢ (𝐾 ∈ ℤ → (exp‘(𝐾 · (i · (2 · π)))) = ((exp‘(i · (2 · π)))↑𝐾)) |
12 | ef2pi 24778 | . . . 4 ⊢ (exp‘(i · (2 · π))) = 1 | |
13 | 12 | oveq1i 6984 | . . 3 ⊢ ((exp‘(i · (2 · π)))↑𝐾) = (1↑𝐾) |
14 | 1exp 13271 | . . 3 ⊢ (𝐾 ∈ ℤ → (1↑𝐾) = 1) | |
15 | 13, 14 | syl5eq 2820 | . 2 ⊢ (𝐾 ∈ ℤ → ((exp‘(i · (2 · π)))↑𝐾) = 1) |
16 | 9, 11, 15 | 3eqtrd 2812 | 1 ⊢ (𝐾 ∈ ℤ → (exp‘((i · (2 · π)) · 𝐾)) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2050 ‘cfv 6185 (class class class)co 6974 ℂcc 10331 1c1 10334 ici 10335 · cmul 10338 2c2 11493 ℤcz 11791 ↑cexp 13242 expce 15273 πcpi 15278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-inf2 8896 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 ax-pre-sup 10411 ax-addf 10412 ax-mulf 10413 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-int 4746 df-iun 4790 df-iin 4791 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-se 5363 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-isom 6194 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-of 7225 df-om 7395 df-1st 7499 df-2nd 7500 df-supp 7632 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-1o 7903 df-2o 7904 df-oadd 7907 df-er 8087 df-map 8206 df-pm 8207 df-ixp 8258 df-en 8305 df-dom 8306 df-sdom 8307 df-fin 8308 df-fsupp 8627 df-fi 8668 df-sup 8699 df-inf 8700 df-oi 8767 df-card 9160 df-cda 9386 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-div 11097 df-nn 11438 df-2 11501 df-3 11502 df-4 11503 df-5 11504 df-6 11505 df-7 11506 df-8 11507 df-9 11508 df-n0 11706 df-z 11792 df-dec 11910 df-uz 12057 df-q 12161 df-rp 12203 df-xneg 12322 df-xadd 12323 df-xmul 12324 df-ioo 12556 df-ioc 12557 df-ico 12558 df-icc 12559 df-fz 12707 df-fzo 12848 df-fl 12975 df-seq 13183 df-exp 13243 df-fac 13447 df-bc 13476 df-hash 13504 df-shft 14285 df-cj 14317 df-re 14318 df-im 14319 df-sqrt 14453 df-abs 14454 df-limsup 14687 df-clim 14704 df-rlim 14705 df-sum 14902 df-ef 15279 df-sin 15281 df-cos 15282 df-pi 15284 df-struct 16339 df-ndx 16340 df-slot 16341 df-base 16343 df-sets 16344 df-ress 16345 df-plusg 16432 df-mulr 16433 df-starv 16434 df-sca 16435 df-vsca 16436 df-ip 16437 df-tset 16438 df-ple 16439 df-ds 16441 df-unif 16442 df-hom 16443 df-cco 16444 df-rest 16550 df-topn 16551 df-0g 16569 df-gsum 16570 df-topgen 16571 df-pt 16572 df-prds 16575 df-xrs 16629 df-qtop 16634 df-imas 16635 df-xps 16637 df-mre 16727 df-mrc 16728 df-acs 16730 df-mgm 17722 df-sgrp 17764 df-mnd 17775 df-submnd 17816 df-mulg 18024 df-cntz 18230 df-cmn 18680 df-psmet 20251 df-xmet 20252 df-met 20253 df-bl 20254 df-mopn 20255 df-fbas 20256 df-fg 20257 df-cnfld 20260 df-top 21218 df-topon 21235 df-topsp 21257 df-bases 21270 df-cld 21343 df-ntr 21344 df-cls 21345 df-nei 21422 df-lp 21460 df-perf 21461 df-cn 21551 df-cnp 21552 df-haus 21639 df-tx 21886 df-hmeo 22079 df-fil 22170 df-fm 22262 df-flim 22263 df-flf 22264 df-xms 22645 df-ms 22646 df-tms 22647 df-cncf 23201 df-limc 24179 df-dv 24180 |
This theorem is referenced by: efper 24780 eflogeq 24898 itgexpif 31554 |
Copyright terms: Public domain | W3C validator |