Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  perfectALTV Structured version   Visualization version   GIF version

Theorem perfectALTV 44236
Description: The Euclid-Euler theorem, or Perfect Number theorem. A positive even integer 𝑁 is a perfect number (that is, its divisor sum is 2𝑁) if and only if it is of the form 2↑(𝑝 − 1) · (2↑𝑝 − 1), where 2↑𝑝 − 1 is prime (a Mersenne prime). (It follows from this that 𝑝 is also prime.) This is Metamath 100 proof #70. (Contributed by Mario Carneiro, 17-May-2016.) (Revised by AV, 1-Jul-2020.) (Proof modification is discouraged.)
Assertion
Ref Expression
perfectALTV ((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → ((1 σ 𝑁) = (2 · 𝑁) ↔ ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)))))
Distinct variable group:   𝑁,𝑝

Proof of Theorem perfectALTV
StepHypRef Expression
1 2dvdseven 44166 . . . . . . . 8 (𝑁 ∈ Even → 2 ∥ 𝑁)
21ad2antlr 726 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → 2 ∥ 𝑁)
3 2prm 16026 . . . . . . . 8 2 ∈ ℙ
4 simpll 766 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → 𝑁 ∈ ℕ)
5 pcelnn 16196 . . . . . . . 8 ((2 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((2 pCnt 𝑁) ∈ ℕ ↔ 2 ∥ 𝑁))
63, 4, 5sylancr 590 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((2 pCnt 𝑁) ∈ ℕ ↔ 2 ∥ 𝑁))
72, 6mpbird 260 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2 pCnt 𝑁) ∈ ℕ)
87nnzd 12074 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2 pCnt 𝑁) ∈ ℤ)
98peano2zd 12078 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((2 pCnt 𝑁) + 1) ∈ ℤ)
10 pcdvds 16190 . . . . . . . . 9 ((2 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (2↑(2 pCnt 𝑁)) ∥ 𝑁)
113, 4, 10sylancr 590 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2↑(2 pCnt 𝑁)) ∥ 𝑁)
12 2nn 11698 . . . . . . . . . 10 2 ∈ ℕ
137nnnn0d 11943 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2 pCnt 𝑁) ∈ ℕ0)
14 nnexpcl 13438 . . . . . . . . . 10 ((2 ∈ ℕ ∧ (2 pCnt 𝑁) ∈ ℕ0) → (2↑(2 pCnt 𝑁)) ∈ ℕ)
1512, 13, 14sylancr 590 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2↑(2 pCnt 𝑁)) ∈ ℕ)
16 nndivdvds 15608 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (2↑(2 pCnt 𝑁)) ∈ ℕ) → ((2↑(2 pCnt 𝑁)) ∥ 𝑁 ↔ (𝑁 / (2↑(2 pCnt 𝑁))) ∈ ℕ))
174, 15, 16syl2anc 587 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((2↑(2 pCnt 𝑁)) ∥ 𝑁 ↔ (𝑁 / (2↑(2 pCnt 𝑁))) ∈ ℕ))
1811, 17mpbid 235 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (𝑁 / (2↑(2 pCnt 𝑁))) ∈ ℕ)
1918nnzd 12074 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (𝑁 / (2↑(2 pCnt 𝑁))) ∈ ℤ)
20 pcndvds2 16194 . . . . . . . . 9 ((2 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ¬ 2 ∥ (𝑁 / (2↑(2 pCnt 𝑁))))
213, 4, 20sylancr 590 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ¬ 2 ∥ (𝑁 / (2↑(2 pCnt 𝑁))))
22 isodd3 44165 . . . . . . . 8 ((𝑁 / (2↑(2 pCnt 𝑁))) ∈ Odd ↔ ((𝑁 / (2↑(2 pCnt 𝑁))) ∈ ℤ ∧ ¬ 2 ∥ (𝑁 / (2↑(2 pCnt 𝑁)))))
2319, 21, 22sylanbrc 586 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (𝑁 / (2↑(2 pCnt 𝑁))) ∈ Odd )
24 simpr 488 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (1 σ 𝑁) = (2 · 𝑁))
25 nncn 11633 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2625ad2antrr 725 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → 𝑁 ∈ ℂ)
2715nncnd 11641 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2↑(2 pCnt 𝑁)) ∈ ℂ)
2815nnne0d 11675 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2↑(2 pCnt 𝑁)) ≠ 0)
2926, 27, 28divcan2d 11407 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((2↑(2 pCnt 𝑁)) · (𝑁 / (2↑(2 pCnt 𝑁)))) = 𝑁)
3029oveq2d 7151 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (1 σ ((2↑(2 pCnt 𝑁)) · (𝑁 / (2↑(2 pCnt 𝑁))))) = (1 σ 𝑁))
3129oveq2d 7151 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2 · ((2↑(2 pCnt 𝑁)) · (𝑁 / (2↑(2 pCnt 𝑁))))) = (2 · 𝑁))
3224, 30, 313eqtr4d 2843 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (1 σ ((2↑(2 pCnt 𝑁)) · (𝑁 / (2↑(2 pCnt 𝑁))))) = (2 · ((2↑(2 pCnt 𝑁)) · (𝑁 / (2↑(2 pCnt 𝑁))))))
337, 18, 23, 32perfectALTVlem2 44235 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((𝑁 / (2↑(2 pCnt 𝑁))) ∈ ℙ ∧ (𝑁 / (2↑(2 pCnt 𝑁))) = ((2↑((2 pCnt 𝑁) + 1)) − 1)))
3433simprd 499 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (𝑁 / (2↑(2 pCnt 𝑁))) = ((2↑((2 pCnt 𝑁) + 1)) − 1))
3533simpld 498 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (𝑁 / (2↑(2 pCnt 𝑁))) ∈ ℙ)
3634, 35eqeltrrd 2891 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((2↑((2 pCnt 𝑁) + 1)) − 1) ∈ ℙ)
377nncnd 11641 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2 pCnt 𝑁) ∈ ℂ)
38 ax-1cn 10584 . . . . . . . . 9 1 ∈ ℂ
39 pncan 10881 . . . . . . . . 9 (((2 pCnt 𝑁) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 pCnt 𝑁) + 1) − 1) = (2 pCnt 𝑁))
4037, 38, 39sylancl 589 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (((2 pCnt 𝑁) + 1) − 1) = (2 pCnt 𝑁))
4140eqcomd 2804 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2 pCnt 𝑁) = (((2 pCnt 𝑁) + 1) − 1))
4241oveq2d 7151 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2↑(2 pCnt 𝑁)) = (2↑(((2 pCnt 𝑁) + 1) − 1)))
4342, 34oveq12d 7153 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((2↑(2 pCnt 𝑁)) · (𝑁 / (2↑(2 pCnt 𝑁)))) = ((2↑(((2 pCnt 𝑁) + 1) − 1)) · ((2↑((2 pCnt 𝑁) + 1)) − 1)))
4429, 43eqtr3d 2835 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → 𝑁 = ((2↑(((2 pCnt 𝑁) + 1) − 1)) · ((2↑((2 pCnt 𝑁) + 1)) − 1)))
45 oveq2 7143 . . . . . . . 8 (𝑝 = ((2 pCnt 𝑁) + 1) → (2↑𝑝) = (2↑((2 pCnt 𝑁) + 1)))
4645oveq1d 7150 . . . . . . 7 (𝑝 = ((2 pCnt 𝑁) + 1) → ((2↑𝑝) − 1) = ((2↑((2 pCnt 𝑁) + 1)) − 1))
4746eleq1d 2874 . . . . . 6 (𝑝 = ((2 pCnt 𝑁) + 1) → (((2↑𝑝) − 1) ∈ ℙ ↔ ((2↑((2 pCnt 𝑁) + 1)) − 1) ∈ ℙ))
48 oveq1 7142 . . . . . . . . 9 (𝑝 = ((2 pCnt 𝑁) + 1) → (𝑝 − 1) = (((2 pCnt 𝑁) + 1) − 1))
4948oveq2d 7151 . . . . . . . 8 (𝑝 = ((2 pCnt 𝑁) + 1) → (2↑(𝑝 − 1)) = (2↑(((2 pCnt 𝑁) + 1) − 1)))
5049, 46oveq12d 7153 . . . . . . 7 (𝑝 = ((2 pCnt 𝑁) + 1) → ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)) = ((2↑(((2 pCnt 𝑁) + 1) − 1)) · ((2↑((2 pCnt 𝑁) + 1)) − 1)))
5150eqeq2d 2809 . . . . . 6 (𝑝 = ((2 pCnt 𝑁) + 1) → (𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)) ↔ 𝑁 = ((2↑(((2 pCnt 𝑁) + 1) − 1)) · ((2↑((2 pCnt 𝑁) + 1)) − 1))))
5247, 51anbi12d 633 . . . . 5 (𝑝 = ((2 pCnt 𝑁) + 1) → ((((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))) ↔ (((2↑((2 pCnt 𝑁) + 1)) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(((2 pCnt 𝑁) + 1) − 1)) · ((2↑((2 pCnt 𝑁) + 1)) − 1)))))
5352rspcev 3571 . . . 4 ((((2 pCnt 𝑁) + 1) ∈ ℤ ∧ (((2↑((2 pCnt 𝑁) + 1)) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(((2 pCnt 𝑁) + 1) − 1)) · ((2↑((2 pCnt 𝑁) + 1)) − 1)))) → ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))
549, 36, 44, 53syl12anc 835 . . 3 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))
5554ex 416 . 2 ((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → ((1 σ 𝑁) = (2 · 𝑁) → ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)))))
56 perfect1 25812 . . . . . 6 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (1 σ ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))) = ((2↑𝑝) · ((2↑𝑝) − 1)))
57 2cn 11700 . . . . . . . . 9 2 ∈ ℂ
58 mersenne 25811 . . . . . . . . . 10 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → 𝑝 ∈ ℙ)
59 prmnn 16008 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
6058, 59syl 17 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → 𝑝 ∈ ℕ)
61 expm1t 13453 . . . . . . . . 9 ((2 ∈ ℂ ∧ 𝑝 ∈ ℕ) → (2↑𝑝) = ((2↑(𝑝 − 1)) · 2))
6257, 60, 61sylancr 590 . . . . . . . 8 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (2↑𝑝) = ((2↑(𝑝 − 1)) · 2))
63 nnm1nn0 11926 . . . . . . . . . . 11 (𝑝 ∈ ℕ → (𝑝 − 1) ∈ ℕ0)
6460, 63syl 17 . . . . . . . . . 10 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (𝑝 − 1) ∈ ℕ0)
65 expcl 13443 . . . . . . . . . 10 ((2 ∈ ℂ ∧ (𝑝 − 1) ∈ ℕ0) → (2↑(𝑝 − 1)) ∈ ℂ)
6657, 64, 65sylancr 590 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (2↑(𝑝 − 1)) ∈ ℂ)
67 mulcom 10612 . . . . . . . . 9 (((2↑(𝑝 − 1)) ∈ ℂ ∧ 2 ∈ ℂ) → ((2↑(𝑝 − 1)) · 2) = (2 · (2↑(𝑝 − 1))))
6866, 57, 67sylancl 589 . . . . . . . 8 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → ((2↑(𝑝 − 1)) · 2) = (2 · (2↑(𝑝 − 1))))
6962, 68eqtrd 2833 . . . . . . 7 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (2↑𝑝) = (2 · (2↑(𝑝 − 1))))
7069oveq1d 7150 . . . . . 6 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → ((2↑𝑝) · ((2↑𝑝) − 1)) = ((2 · (2↑(𝑝 − 1))) · ((2↑𝑝) − 1)))
71 2cnd 11703 . . . . . . 7 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → 2 ∈ ℂ)
72 prmnn 16008 . . . . . . . . 9 (((2↑𝑝) − 1) ∈ ℙ → ((2↑𝑝) − 1) ∈ ℕ)
7372adantl 485 . . . . . . . 8 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → ((2↑𝑝) − 1) ∈ ℕ)
7473nncnd 11641 . . . . . . 7 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → ((2↑𝑝) − 1) ∈ ℂ)
7571, 66, 74mulassd 10653 . . . . . 6 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → ((2 · (2↑(𝑝 − 1))) · ((2↑𝑝) − 1)) = (2 · ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))
7656, 70, 753eqtrd 2837 . . . . 5 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (1 σ ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))) = (2 · ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))
77 oveq2 7143 . . . . . 6 (𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)) → (1 σ 𝑁) = (1 σ ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))
78 oveq2 7143 . . . . . 6 (𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)) → (2 · 𝑁) = (2 · ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))
7977, 78eqeq12d 2814 . . . . 5 (𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)) → ((1 σ 𝑁) = (2 · 𝑁) ↔ (1 σ ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))) = (2 · ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)))))
8076, 79syl5ibrcom 250 . . . 4 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)) → (1 σ 𝑁) = (2 · 𝑁)))
8180impr 458 . . 3 ((𝑝 ∈ ℤ ∧ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)))) → (1 σ 𝑁) = (2 · 𝑁))
8281rexlimiva 3240 . 2 (∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))) → (1 σ 𝑁) = (2 · 𝑁))
8355, 82impbid1 228 1 ((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → ((1 σ 𝑁) = (2 · 𝑁) ↔ ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3107   class class class wbr 5030  (class class class)co 7135  cc 10524  1c1 10527   + caddc 10529   · cmul 10531  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cz 11969  cexp 13425  cdvds 15599  cprime 16005   pCnt cpc 16163   σ csgm 25681   Even ceven 44137   Odd codd 44138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-dvds 15600  df-gcd 15834  df-prm 16006  df-pc 16164  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-log 25148  df-cxp 25149  df-sgm 25687  df-even 44139  df-odd 44140
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator