![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmlift3lem1 | Structured version Visualization version GIF version |
Description: Lemma for cvmlift3 31909. (Contributed by Mario Carneiro, 6-Jul-2015.) |
Ref | Expression |
---|---|
cvmlift3.b | ⊢ 𝐵 = ∪ 𝐶 |
cvmlift3.y | ⊢ 𝑌 = ∪ 𝐾 |
cvmlift3.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
cvmlift3.k | ⊢ (𝜑 → 𝐾 ∈ SConn) |
cvmlift3.l | ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) |
cvmlift3.o | ⊢ (𝜑 → 𝑂 ∈ 𝑌) |
cvmlift3.g | ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) |
cvmlift3.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
cvmlift3.e | ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) |
cvmlift3lem1.1 | ⊢ (𝜑 → 𝑀 ∈ (II Cn 𝐾)) |
cvmlift3lem1.2 | ⊢ (𝜑 → (𝑀‘0) = 𝑂) |
cvmlift3lem1.3 | ⊢ (𝜑 → 𝑁 ∈ (II Cn 𝐾)) |
cvmlift3lem1.4 | ⊢ (𝜑 → (𝑁‘0) = 𝑂) |
cvmlift3lem1.5 | ⊢ (𝜑 → (𝑀‘1) = (𝑁‘1)) |
Ref | Expression |
---|---|
cvmlift3lem1 | ⊢ (𝜑 → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑀) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑁) ∧ (𝑔‘0) = 𝑃))‘1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmlift3.b | . . . 4 ⊢ 𝐵 = ∪ 𝐶 | |
2 | eqid 2777 | . . . 4 ⊢ (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑀) ∧ (𝑔‘0) = 𝑃)) = (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑀) ∧ (𝑔‘0) = 𝑃)) | |
3 | eqid 2777 | . . . 4 ⊢ (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑁) ∧ (𝑔‘0) = 𝑃)) = (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑁) ∧ (𝑔‘0) = 𝑃)) | |
4 | cvmlift3.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) | |
5 | cvmlift3.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
6 | cvmlift3.e | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) | |
7 | cvmlift3lem1.2 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘0) = 𝑂) | |
8 | 7 | fveq2d 6450 | . . . . . 6 ⊢ (𝜑 → (𝐺‘(𝑀‘0)) = (𝐺‘𝑂)) |
9 | 6, 8 | eqtr4d 2816 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘(𝑀‘0))) |
10 | cvmlift3lem1.1 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ (II Cn 𝐾)) | |
11 | iiuni 23092 | . . . . . . . 8 ⊢ (0[,]1) = ∪ II | |
12 | cvmlift3.y | . . . . . . . 8 ⊢ 𝑌 = ∪ 𝐾 | |
13 | 11, 12 | cnf 21458 | . . . . . . 7 ⊢ (𝑀 ∈ (II Cn 𝐾) → 𝑀:(0[,]1)⟶𝑌) |
14 | 10, 13 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑀:(0[,]1)⟶𝑌) |
15 | 0elunit 12605 | . . . . . 6 ⊢ 0 ∈ (0[,]1) | |
16 | fvco3 6535 | . . . . . 6 ⊢ ((𝑀:(0[,]1)⟶𝑌 ∧ 0 ∈ (0[,]1)) → ((𝐺 ∘ 𝑀)‘0) = (𝐺‘(𝑀‘0))) | |
17 | 14, 15, 16 | sylancl 580 | . . . . 5 ⊢ (𝜑 → ((𝐺 ∘ 𝑀)‘0) = (𝐺‘(𝑀‘0))) |
18 | 9, 17 | eqtr4d 2816 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑃) = ((𝐺 ∘ 𝑀)‘0)) |
19 | cvmlift3.k | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ SConn) | |
20 | cvmlift3lem1.3 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (II Cn 𝐾)) | |
21 | cvmlift3lem1.4 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘0) = 𝑂) | |
22 | 7, 21 | eqtr4d 2816 | . . . . . 6 ⊢ (𝜑 → (𝑀‘0) = (𝑁‘0)) |
23 | cvmlift3lem1.5 | . . . . . 6 ⊢ (𝜑 → (𝑀‘1) = (𝑁‘1)) | |
24 | 19, 10, 20, 22, 23 | sconnpht2 31819 | . . . . 5 ⊢ (𝜑 → 𝑀( ≃ph‘𝐾)𝑁) |
25 | cvmlift3.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) | |
26 | 24, 25 | phtpcco2 23206 | . . . 4 ⊢ (𝜑 → (𝐺 ∘ 𝑀)( ≃ph‘𝐽)(𝐺 ∘ 𝑁)) |
27 | 1, 2, 3, 4, 5, 18, 26 | cvmliftpht 31899 | . . 3 ⊢ (𝜑 → (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑀) ∧ (𝑔‘0) = 𝑃))( ≃ph‘𝐶)(℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑁) ∧ (𝑔‘0) = 𝑃))) |
28 | phtpc01 23203 | . . 3 ⊢ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑀) ∧ (𝑔‘0) = 𝑃))( ≃ph‘𝐶)(℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑁) ∧ (𝑔‘0) = 𝑃)) → (((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑀) ∧ (𝑔‘0) = 𝑃))‘0) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑁) ∧ (𝑔‘0) = 𝑃))‘0) ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑀) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑁) ∧ (𝑔‘0) = 𝑃))‘1))) | |
29 | 27, 28 | syl 17 | . 2 ⊢ (𝜑 → (((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑀) ∧ (𝑔‘0) = 𝑃))‘0) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑁) ∧ (𝑔‘0) = 𝑃))‘0) ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑀) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑁) ∧ (𝑔‘0) = 𝑃))‘1))) |
30 | 29 | simprd 491 | 1 ⊢ (𝜑 → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑀) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑁) ∧ (𝑔‘0) = 𝑃))‘1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2106 ∪ cuni 4671 class class class wbr 4886 ∘ ccom 5359 ⟶wf 6131 ‘cfv 6135 ℩crio 6882 (class class class)co 6922 0cc0 10272 1c1 10273 [,]cicc 12490 Cn ccn 21436 𝑛-Locally cnlly 21677 IIcii 23086 ≃phcphtpc 23176 PConncpconn 31800 SConncsconn 31801 CovMap ccvm 31836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 ax-addf 10351 ax-mulf 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-iin 4756 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-of 7174 df-om 7344 df-1st 7445 df-2nd 7446 df-supp 7577 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-2o 7844 df-oadd 7847 df-er 8026 df-ec 8028 df-map 8142 df-ixp 8195 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-fsupp 8564 df-fi 8605 df-sup 8636 df-inf 8637 df-oi 8704 df-card 9098 df-cda 9325 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-z 11729 df-dec 11846 df-uz 11993 df-q 12096 df-rp 12138 df-xneg 12257 df-xadd 12258 df-xmul 12259 df-ioo 12491 df-ico 12493 df-icc 12494 df-fz 12644 df-fzo 12785 df-fl 12912 df-seq 13120 df-exp 13179 df-hash 13436 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-clim 14627 df-sum 14825 df-struct 16257 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-ress 16263 df-plusg 16351 df-mulr 16352 df-starv 16353 df-sca 16354 df-vsca 16355 df-ip 16356 df-tset 16357 df-ple 16358 df-ds 16360 df-unif 16361 df-hom 16362 df-cco 16363 df-rest 16469 df-topn 16470 df-0g 16488 df-gsum 16489 df-topgen 16490 df-pt 16491 df-prds 16494 df-xrs 16548 df-qtop 16553 df-imas 16554 df-xps 16556 df-mre 16632 df-mrc 16633 df-acs 16635 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-submnd 17722 df-mulg 17928 df-cntz 18133 df-cmn 18581 df-psmet 20134 df-xmet 20135 df-met 20136 df-bl 20137 df-mopn 20138 df-cnfld 20143 df-top 21106 df-topon 21123 df-topsp 21145 df-bases 21158 df-cld 21231 df-ntr 21232 df-cls 21233 df-nei 21310 df-cn 21439 df-cnp 21440 df-cmp 21599 df-conn 21624 df-lly 21678 df-nlly 21679 df-tx 21774 df-hmeo 21967 df-xms 22533 df-ms 22534 df-tms 22535 df-ii 23088 df-htpy 23177 df-phtpy 23178 df-phtpc 23199 df-pco 23212 df-pconn 31802 df-sconn 31803 df-cvm 31837 |
This theorem is referenced by: cvmlift3lem2 31901 |
Copyright terms: Public domain | W3C validator |