Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem1 Structured version   Visualization version   GIF version

Theorem cvmlift3lem1 35306
Description: Lemma for cvmlift3 35315. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift3.k (𝜑𝐾 ∈ SConn)
cvmlift3.l (𝜑𝐾 ∈ 𝑛-Locally PConn)
cvmlift3.o (𝜑𝑂𝑌)
cvmlift3.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (𝜑𝑃𝐵)
cvmlift3.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
cvmlift3lem1.1 (𝜑𝑀 ∈ (II Cn 𝐾))
cvmlift3lem1.2 (𝜑 → (𝑀‘0) = 𝑂)
cvmlift3lem1.3 (𝜑𝑁 ∈ (II Cn 𝐾))
cvmlift3lem1.4 (𝜑 → (𝑁‘0) = 𝑂)
cvmlift3lem1.5 (𝜑 → (𝑀‘1) = (𝑁‘1))
Assertion
Ref Expression
cvmlift3lem1 (𝜑 → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑀) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑁) ∧ (𝑔‘0) = 𝑃))‘1))
Distinct variable groups:   𝑔,𝐽   𝑔,𝐹   𝑔,𝑀   𝑔,𝑁   𝐵,𝑔   𝑔,𝐺   𝐶,𝑔   𝑔,𝐾   𝑃,𝑔   𝑔,𝑂   𝑔,𝑌
Allowed substitution hint:   𝜑(𝑔)

Proof of Theorem cvmlift3lem1
StepHypRef Expression
1 cvmlift3.b . . . 4 𝐵 = 𝐶
2 eqid 2729 . . . 4 (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑀) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑀) ∧ (𝑔‘0) = 𝑃))
3 eqid 2729 . . . 4 (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑁) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑁) ∧ (𝑔‘0) = 𝑃))
4 cvmlift3.f . . . 4 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
5 cvmlift3.p . . . 4 (𝜑𝑃𝐵)
6 cvmlift3.e . . . . . 6 (𝜑 → (𝐹𝑃) = (𝐺𝑂))
7 cvmlift3lem1.2 . . . . . . 7 (𝜑 → (𝑀‘0) = 𝑂)
87fveq2d 6862 . . . . . 6 (𝜑 → (𝐺‘(𝑀‘0)) = (𝐺𝑂))
96, 8eqtr4d 2767 . . . . 5 (𝜑 → (𝐹𝑃) = (𝐺‘(𝑀‘0)))
10 cvmlift3lem1.1 . . . . . . 7 (𝜑𝑀 ∈ (II Cn 𝐾))
11 iiuni 24774 . . . . . . . 8 (0[,]1) = II
12 cvmlift3.y . . . . . . . 8 𝑌 = 𝐾
1311, 12cnf 23133 . . . . . . 7 (𝑀 ∈ (II Cn 𝐾) → 𝑀:(0[,]1)⟶𝑌)
1410, 13syl 17 . . . . . 6 (𝜑𝑀:(0[,]1)⟶𝑌)
15 0elunit 13430 . . . . . 6 0 ∈ (0[,]1)
16 fvco3 6960 . . . . . 6 ((𝑀:(0[,]1)⟶𝑌 ∧ 0 ∈ (0[,]1)) → ((𝐺𝑀)‘0) = (𝐺‘(𝑀‘0)))
1714, 15, 16sylancl 586 . . . . 5 (𝜑 → ((𝐺𝑀)‘0) = (𝐺‘(𝑀‘0)))
189, 17eqtr4d 2767 . . . 4 (𝜑 → (𝐹𝑃) = ((𝐺𝑀)‘0))
19 cvmlift3.k . . . . . 6 (𝜑𝐾 ∈ SConn)
20 cvmlift3lem1.3 . . . . . 6 (𝜑𝑁 ∈ (II Cn 𝐾))
21 cvmlift3lem1.4 . . . . . . 7 (𝜑 → (𝑁‘0) = 𝑂)
227, 21eqtr4d 2767 . . . . . 6 (𝜑 → (𝑀‘0) = (𝑁‘0))
23 cvmlift3lem1.5 . . . . . 6 (𝜑 → (𝑀‘1) = (𝑁‘1))
2419, 10, 20, 22, 23sconnpht2 35225 . . . . 5 (𝜑𝑀( ≃ph𝐾)𝑁)
25 cvmlift3.g . . . . 5 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
2624, 25phtpcco2 24899 . . . 4 (𝜑 → (𝐺𝑀)( ≃ph𝐽)(𝐺𝑁))
271, 2, 3, 4, 5, 18, 26cvmliftpht 35305 . . 3 (𝜑 → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑀) ∧ (𝑔‘0) = 𝑃))( ≃ph𝐶)(𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑁) ∧ (𝑔‘0) = 𝑃)))
28 phtpc01 24895 . . 3 ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑀) ∧ (𝑔‘0) = 𝑃))( ≃ph𝐶)(𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑁) ∧ (𝑔‘0) = 𝑃)) → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑀) ∧ (𝑔‘0) = 𝑃))‘0) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑁) ∧ (𝑔‘0) = 𝑃))‘0) ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑀) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑁) ∧ (𝑔‘0) = 𝑃))‘1)))
2927, 28syl 17 . 2 (𝜑 → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑀) ∧ (𝑔‘0) = 𝑃))‘0) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑁) ∧ (𝑔‘0) = 𝑃))‘0) ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑀) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑁) ∧ (𝑔‘0) = 𝑃))‘1)))
3029simprd 495 1 (𝜑 → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑀) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑁) ∧ (𝑔‘0) = 𝑃))‘1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   cuni 4871   class class class wbr 5107  ccom 5642  wf 6507  cfv 6511  crio 7343  (class class class)co 7387  0cc0 11068  1c1 11069  [,]cicc 13309   Cn ccn 23111  𝑛-Locally cnlly 23352  IIcii 24768  phcphtpc 24868  PConncpconn 35206  SConncsconn 35207   CovMap ccvm 35242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-ec 8673  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-cn 23114  df-cnp 23115  df-cmp 23274  df-conn 23299  df-lly 23353  df-nlly 23354  df-tx 23449  df-hmeo 23642  df-xms 24208  df-ms 24209  df-tms 24210  df-ii 24770  df-cncf 24771  df-htpy 24869  df-phtpy 24870  df-phtpc 24891  df-pco 24905  df-pconn 35208  df-sconn 35209  df-cvm 35243
This theorem is referenced by:  cvmlift3lem2  35307
  Copyright terms: Public domain W3C validator