Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psgnfix2 | Structured version Visualization version GIF version |
Description: A permutation of a finite set fixing one element is generated by transpositions not involving the fixed element. (Contributed by AV, 17-Jan-2019.) |
Ref | Expression |
---|---|
psgnfix.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
psgnfix.t | ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) |
psgnfix.s | ⊢ 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾})) |
psgnfix.z | ⊢ 𝑍 = (SymGrp‘𝑁) |
psgnfix.r | ⊢ 𝑅 = ran (pmTrsp‘𝑁) |
Ref | Expression |
---|---|
psgnfix2 | ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ∃𝑤 ∈ Word 𝑅𝑄 = (𝑍 Σg 𝑤))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrabi 3596 | . . . 4 ⊢ (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → 𝑄 ∈ 𝑃) | |
2 | 1 | adantl 485 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → 𝑄 ∈ 𝑃) |
3 | psgnfix.z | . . . . . 6 ⊢ 𝑍 = (SymGrp‘𝑁) | |
4 | psgnfix.p | . . . . . . 7 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
5 | 3 | fveq2i 6720 | . . . . . . 7 ⊢ (Base‘𝑍) = (Base‘(SymGrp‘𝑁)) |
6 | 4, 5 | eqtr4i 2768 | . . . . . 6 ⊢ 𝑃 = (Base‘𝑍) |
7 | psgnfix.r | . . . . . 6 ⊢ 𝑅 = ran (pmTrsp‘𝑁) | |
8 | 3, 6, 7 | psgnfitr 18909 | . . . . 5 ⊢ (𝑁 ∈ Fin → (𝑄 ∈ 𝑃 ↔ ∃𝑤 ∈ Word 𝑅𝑄 = (𝑍 Σg 𝑤))) |
9 | 8 | bicomd 226 | . . . 4 ⊢ (𝑁 ∈ Fin → (∃𝑤 ∈ Word 𝑅𝑄 = (𝑍 Σg 𝑤) ↔ 𝑄 ∈ 𝑃)) |
10 | 9 | ad2antrr 726 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (∃𝑤 ∈ Word 𝑅𝑄 = (𝑍 Σg 𝑤) ↔ 𝑄 ∈ 𝑃)) |
11 | 2, 10 | mpbird 260 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → ∃𝑤 ∈ Word 𝑅𝑄 = (𝑍 Σg 𝑤)) |
12 | 11 | ex 416 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ∃𝑤 ∈ Word 𝑅𝑄 = (𝑍 Σg 𝑤))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∃wrex 3062 {crab 3065 ∖ cdif 3863 {csn 4541 ran crn 5552 ‘cfv 6380 (class class class)co 7213 Fincfn 8626 Word cword 14069 Basecbs 16760 Σg cgsu 16945 SymGrpcsymg 18759 pmTrspcpmtr 18833 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-2o 8203 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 df-fzo 13239 df-seq 13575 df-hash 13897 df-word 14070 df-concat 14126 df-s1 14153 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-tset 16821 df-0g 16946 df-gsum 16947 df-mre 17089 df-mrc 17090 df-acs 17092 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-submnd 18219 df-efmnd 18296 df-grp 18368 df-minusg 18369 df-subg 18540 df-symg 18760 df-pmtr 18834 |
This theorem is referenced by: psgndif 20564 |
Copyright terms: Public domain | W3C validator |