![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psgnfix2 | Structured version Visualization version GIF version |
Description: A permutation of a finite set fixing one element is generated by transpositions not involving the fixed element. (Contributed by AV, 17-Jan-2019.) |
Ref | Expression |
---|---|
psgnfix.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
psgnfix.t | ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) |
psgnfix.s | ⊢ 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾})) |
psgnfix.z | ⊢ 𝑍 = (SymGrp‘𝑁) |
psgnfix.r | ⊢ 𝑅 = ran (pmTrsp‘𝑁) |
Ref | Expression |
---|---|
psgnfix2 | ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ∃𝑤 ∈ Word 𝑅𝑄 = (𝑍 Σg 𝑤))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrabi 3675 | . . . 4 ⊢ (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → 𝑄 ∈ 𝑃) | |
2 | 1 | adantl 483 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → 𝑄 ∈ 𝑃) |
3 | psgnfix.z | . . . . . 6 ⊢ 𝑍 = (SymGrp‘𝑁) | |
4 | psgnfix.p | . . . . . . 7 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
5 | 3 | fveq2i 6884 | . . . . . . 7 ⊢ (Base‘𝑍) = (Base‘(SymGrp‘𝑁)) |
6 | 4, 5 | eqtr4i 2764 | . . . . . 6 ⊢ 𝑃 = (Base‘𝑍) |
7 | psgnfix.r | . . . . . 6 ⊢ 𝑅 = ran (pmTrsp‘𝑁) | |
8 | 3, 6, 7 | psgnfitr 19369 | . . . . 5 ⊢ (𝑁 ∈ Fin → (𝑄 ∈ 𝑃 ↔ ∃𝑤 ∈ Word 𝑅𝑄 = (𝑍 Σg 𝑤))) |
9 | 8 | bicomd 222 | . . . 4 ⊢ (𝑁 ∈ Fin → (∃𝑤 ∈ Word 𝑅𝑄 = (𝑍 Σg 𝑤) ↔ 𝑄 ∈ 𝑃)) |
10 | 9 | ad2antrr 725 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (∃𝑤 ∈ Word 𝑅𝑄 = (𝑍 Σg 𝑤) ↔ 𝑄 ∈ 𝑃)) |
11 | 2, 10 | mpbird 257 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → ∃𝑤 ∈ Word 𝑅𝑄 = (𝑍 Σg 𝑤)) |
12 | 11 | ex 414 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ∃𝑤 ∈ Word 𝑅𝑄 = (𝑍 Σg 𝑤))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃wrex 3071 {crab 3433 ∖ cdif 3943 {csn 4624 ran crn 5673 ‘cfv 6535 (class class class)co 7396 Fincfn 8927 Word cword 14451 Basecbs 17131 Σg cgsu 17373 SymGrpcsymg 19218 pmTrspcpmtr 19293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 ax-cnex 11153 ax-resscn 11154 ax-1cn 11155 ax-icn 11156 ax-addcl 11157 ax-addrcl 11158 ax-mulcl 11159 ax-mulrcl 11160 ax-mulcom 11161 ax-addass 11162 ax-mulass 11163 ax-distr 11164 ax-i2m1 11165 ax-1ne0 11166 ax-1rid 11167 ax-rnegex 11168 ax-rrecex 11169 ax-cnre 11170 ax-pre-lttri 11171 ax-pre-lttrn 11172 ax-pre-ltadd 11173 ax-pre-mulgt0 11174 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4905 df-int 4947 df-iun 4995 df-iin 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6292 df-ord 6359 df-on 6360 df-lim 6361 df-suc 6362 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-isom 6544 df-riota 7352 df-ov 7399 df-oprab 7400 df-mpo 7401 df-om 7843 df-1st 7962 df-2nd 7963 df-frecs 8253 df-wrecs 8284 df-recs 8358 df-rdg 8397 df-1o 8453 df-2o 8454 df-er 8691 df-map 8810 df-en 8928 df-dom 8929 df-sdom 8930 df-fin 8931 df-card 9921 df-pnf 11237 df-mnf 11238 df-xr 11239 df-ltxr 11240 df-le 11241 df-sub 11433 df-neg 11434 df-nn 12200 df-2 12262 df-3 12263 df-4 12264 df-5 12265 df-6 12266 df-7 12267 df-8 12268 df-9 12269 df-n0 12460 df-z 12546 df-uz 12810 df-fz 13472 df-fzo 13615 df-seq 13954 df-hash 14278 df-word 14452 df-concat 14508 df-s1 14533 df-struct 17067 df-sets 17084 df-slot 17102 df-ndx 17114 df-base 17132 df-ress 17161 df-plusg 17197 df-tset 17203 df-0g 17374 df-gsum 17375 df-mre 17517 df-mrc 17518 df-acs 17520 df-mgm 18548 df-sgrp 18597 df-mnd 18613 df-submnd 18659 df-efmnd 18737 df-grp 18809 df-minusg 18810 df-subg 18988 df-symg 19219 df-pmtr 19294 |
This theorem is referenced by: psgndif 21128 |
Copyright terms: Public domain | W3C validator |