| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > quartlem3 | Structured version Visualization version GIF version | ||
| Description: Closure lemmas for quart 26796. (Contributed by Mario Carneiro, 7-May-2015.) |
| Ref | Expression |
|---|---|
| quart.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| quart.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| quart.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| quart.d | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| quart.x | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| quart.e | ⊢ (𝜑 → 𝐸 = -(𝐴 / 4)) |
| quart.p | ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) |
| quart.q | ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) |
| quart.r | ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) |
| quart.u | ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) |
| quart.v | ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) |
| quart.w | ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) |
| quart.s | ⊢ (𝜑 → 𝑆 = ((√‘𝑀) / 2)) |
| quart.m | ⊢ (𝜑 → 𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3)) |
| quart.t | ⊢ (𝜑 → 𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))) |
| quart.t0 | ⊢ (𝜑 → 𝑇 ≠ 0) |
| Ref | Expression |
|---|---|
| quartlem3 | ⊢ (𝜑 → (𝑆 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑇 ∈ ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | quart.s | . . 3 ⊢ (𝜑 → 𝑆 = ((√‘𝑀) / 2)) | |
| 2 | quart.m | . . . . . 6 ⊢ (𝜑 → 𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3)) | |
| 3 | 2cn 12197 | . . . . . . . . . . 11 ⊢ 2 ∈ ℂ | |
| 4 | quart.a | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 5 | quart.b | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 6 | quart.c | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 7 | quart.d | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
| 8 | quart.p | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) | |
| 9 | quart.q | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) | |
| 10 | quart.r | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) | |
| 11 | 4, 5, 6, 7, 8, 9, 10 | quart1cl 26789 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ)) |
| 12 | 11 | simp1d 1142 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
| 13 | mulcl 11087 | . . . . . . . . . . 11 ⊢ ((2 ∈ ℂ ∧ 𝑃 ∈ ℂ) → (2 · 𝑃) ∈ ℂ) | |
| 14 | 3, 12, 13 | sylancr 587 | . . . . . . . . . 10 ⊢ (𝜑 → (2 · 𝑃) ∈ ℂ) |
| 15 | quart.t | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))) | |
| 16 | quart.e | . . . . . . . . . . . . . . . 16 ⊢ (𝜑 → 𝐸 = -(𝐴 / 4)) | |
| 17 | quart.u | . . . . . . . . . . . . . . . 16 ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) | |
| 18 | quart.v | . . . . . . . . . . . . . . . 16 ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) | |
| 19 | quart.w | . . . . . . . . . . . . . . . 16 ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) | |
| 20 | 4, 5, 6, 7, 4, 16, 8, 9, 10, 17, 18, 19 | quartlem2 26793 | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → (𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ)) |
| 21 | 20 | simp2d 1143 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝑉 ∈ ℂ) |
| 22 | 20 | simp3d 1144 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝑊 ∈ ℂ) |
| 23 | 21, 22 | addcld 11128 | . . . . . . . . . . . . 13 ⊢ (𝜑 → (𝑉 + 𝑊) ∈ ℂ) |
| 24 | 23 | halfcld 12363 | . . . . . . . . . . . 12 ⊢ (𝜑 → ((𝑉 + 𝑊) / 2) ∈ ℂ) |
| 25 | 3nn 12201 | . . . . . . . . . . . . . 14 ⊢ 3 ∈ ℕ | |
| 26 | nnrecre 12164 | . . . . . . . . . . . . . 14 ⊢ (3 ∈ ℕ → (1 / 3) ∈ ℝ) | |
| 27 | 25, 26 | ax-mp 5 | . . . . . . . . . . . . 13 ⊢ (1 / 3) ∈ ℝ |
| 28 | 27 | recni 11123 | . . . . . . . . . . . 12 ⊢ (1 / 3) ∈ ℂ |
| 29 | cxpcl 26608 | . . . . . . . . . . . 12 ⊢ ((((𝑉 + 𝑊) / 2) ∈ ℂ ∧ (1 / 3) ∈ ℂ) → (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3)) ∈ ℂ) | |
| 30 | 24, 28, 29 | sylancl 586 | . . . . . . . . . . 11 ⊢ (𝜑 → (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3)) ∈ ℂ) |
| 31 | 15, 30 | eqeltrd 2831 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑇 ∈ ℂ) |
| 32 | 14, 31 | addcld 11128 | . . . . . . . . 9 ⊢ (𝜑 → ((2 · 𝑃) + 𝑇) ∈ ℂ) |
| 33 | 20 | simp1d 1142 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 ∈ ℂ) |
| 34 | quart.t0 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑇 ≠ 0) | |
| 35 | 33, 31, 34 | divcld 11894 | . . . . . . . . 9 ⊢ (𝜑 → (𝑈 / 𝑇) ∈ ℂ) |
| 36 | 32, 35 | addcld 11128 | . . . . . . . 8 ⊢ (𝜑 → (((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) ∈ ℂ) |
| 37 | 3cn 12203 | . . . . . . . . 9 ⊢ 3 ∈ ℂ | |
| 38 | 37 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 3 ∈ ℂ) |
| 39 | 3ne0 12228 | . . . . . . . . 9 ⊢ 3 ≠ 0 | |
| 40 | 39 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 3 ≠ 0) |
| 41 | 36, 38, 40 | divcld 11894 | . . . . . . 7 ⊢ (𝜑 → ((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3) ∈ ℂ) |
| 42 | 41 | negcld 11456 | . . . . . 6 ⊢ (𝜑 → -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3) ∈ ℂ) |
| 43 | 2, 42 | eqeltrd 2831 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 44 | 43 | sqrtcld 15344 | . . . 4 ⊢ (𝜑 → (√‘𝑀) ∈ ℂ) |
| 45 | 44 | halfcld 12363 | . . 3 ⊢ (𝜑 → ((√‘𝑀) / 2) ∈ ℂ) |
| 46 | 1, 45 | eqeltrd 2831 | . 2 ⊢ (𝜑 → 𝑆 ∈ ℂ) |
| 47 | 46, 43, 31 | 3jca 1128 | 1 ⊢ (𝜑 → (𝑆 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑇 ∈ ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 ℝcr 11002 0cc0 11003 1c1 11004 + caddc 11006 · cmul 11008 − cmin 11341 -cneg 11342 / cdiv 11771 ℕcn 12122 2c2 12177 3c3 12178 4c4 12179 5c5 12180 6c6 12181 7c7 12182 8c8 12183 ;cdc 12585 ↑cexp 13965 √csqrt 15137 ↑𝑐ccxp 26489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 ax-addf 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-ioo 13246 df-ioc 13247 df-ico 13248 df-icc 13249 df-fz 13405 df-fzo 13552 df-fl 13693 df-mod 13771 df-seq 13906 df-exp 13966 df-fac 14178 df-bc 14207 df-hash 14235 df-shft 14971 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-limsup 15375 df-clim 15392 df-rlim 15393 df-sum 15591 df-ef 15971 df-sin 15973 df-cos 15974 df-pi 15976 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-hom 17182 df-cco 17183 df-rest 17323 df-topn 17324 df-0g 17342 df-gsum 17343 df-topgen 17344 df-pt 17345 df-prds 17348 df-xrs 17403 df-qtop 17408 df-imas 17409 df-xps 17411 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-mulg 18978 df-cntz 19227 df-cmn 19692 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-fbas 21286 df-fg 21287 df-cnfld 21290 df-top 22807 df-topon 22824 df-topsp 22846 df-bases 22859 df-cld 22932 df-ntr 22933 df-cls 22934 df-nei 23011 df-lp 23049 df-perf 23050 df-cn 23140 df-cnp 23141 df-haus 23228 df-tx 23475 df-hmeo 23668 df-fil 23759 df-fm 23851 df-flim 23852 df-flf 23853 df-xms 24233 df-ms 24234 df-tms 24235 df-cncf 24796 df-limc 25792 df-dv 25793 df-log 26490 df-cxp 26491 |
| This theorem is referenced by: quartlem4 26795 quart 26796 |
| Copyright terms: Public domain | W3C validator |