| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > quartlem3 | Structured version Visualization version GIF version | ||
| Description: Closure lemmas for quart 26778. (Contributed by Mario Carneiro, 7-May-2015.) |
| Ref | Expression |
|---|---|
| quart.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| quart.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| quart.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| quart.d | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| quart.x | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| quart.e | ⊢ (𝜑 → 𝐸 = -(𝐴 / 4)) |
| quart.p | ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) |
| quart.q | ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) |
| quart.r | ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) |
| quart.u | ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) |
| quart.v | ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) |
| quart.w | ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) |
| quart.s | ⊢ (𝜑 → 𝑆 = ((√‘𝑀) / 2)) |
| quart.m | ⊢ (𝜑 → 𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3)) |
| quart.t | ⊢ (𝜑 → 𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))) |
| quart.t0 | ⊢ (𝜑 → 𝑇 ≠ 0) |
| Ref | Expression |
|---|---|
| quartlem3 | ⊢ (𝜑 → (𝑆 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑇 ∈ ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | quart.s | . . 3 ⊢ (𝜑 → 𝑆 = ((√‘𝑀) / 2)) | |
| 2 | quart.m | . . . . . 6 ⊢ (𝜑 → 𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3)) | |
| 3 | 2cn 12268 | . . . . . . . . . . 11 ⊢ 2 ∈ ℂ | |
| 4 | quart.a | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 5 | quart.b | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 6 | quart.c | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 7 | quart.d | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
| 8 | quart.p | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) | |
| 9 | quart.q | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) | |
| 10 | quart.r | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) | |
| 11 | 4, 5, 6, 7, 8, 9, 10 | quart1cl 26771 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ)) |
| 12 | 11 | simp1d 1142 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
| 13 | mulcl 11159 | . . . . . . . . . . 11 ⊢ ((2 ∈ ℂ ∧ 𝑃 ∈ ℂ) → (2 · 𝑃) ∈ ℂ) | |
| 14 | 3, 12, 13 | sylancr 587 | . . . . . . . . . 10 ⊢ (𝜑 → (2 · 𝑃) ∈ ℂ) |
| 15 | quart.t | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))) | |
| 16 | quart.e | . . . . . . . . . . . . . . . 16 ⊢ (𝜑 → 𝐸 = -(𝐴 / 4)) | |
| 17 | quart.u | . . . . . . . . . . . . . . . 16 ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) | |
| 18 | quart.v | . . . . . . . . . . . . . . . 16 ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) | |
| 19 | quart.w | . . . . . . . . . . . . . . . 16 ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) | |
| 20 | 4, 5, 6, 7, 4, 16, 8, 9, 10, 17, 18, 19 | quartlem2 26775 | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → (𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ)) |
| 21 | 20 | simp2d 1143 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝑉 ∈ ℂ) |
| 22 | 20 | simp3d 1144 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝑊 ∈ ℂ) |
| 23 | 21, 22 | addcld 11200 | . . . . . . . . . . . . 13 ⊢ (𝜑 → (𝑉 + 𝑊) ∈ ℂ) |
| 24 | 23 | halfcld 12434 | . . . . . . . . . . . 12 ⊢ (𝜑 → ((𝑉 + 𝑊) / 2) ∈ ℂ) |
| 25 | 3nn 12272 | . . . . . . . . . . . . . 14 ⊢ 3 ∈ ℕ | |
| 26 | nnrecre 12235 | . . . . . . . . . . . . . 14 ⊢ (3 ∈ ℕ → (1 / 3) ∈ ℝ) | |
| 27 | 25, 26 | ax-mp 5 | . . . . . . . . . . . . 13 ⊢ (1 / 3) ∈ ℝ |
| 28 | 27 | recni 11195 | . . . . . . . . . . . 12 ⊢ (1 / 3) ∈ ℂ |
| 29 | cxpcl 26590 | . . . . . . . . . . . 12 ⊢ ((((𝑉 + 𝑊) / 2) ∈ ℂ ∧ (1 / 3) ∈ ℂ) → (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3)) ∈ ℂ) | |
| 30 | 24, 28, 29 | sylancl 586 | . . . . . . . . . . 11 ⊢ (𝜑 → (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3)) ∈ ℂ) |
| 31 | 15, 30 | eqeltrd 2829 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑇 ∈ ℂ) |
| 32 | 14, 31 | addcld 11200 | . . . . . . . . 9 ⊢ (𝜑 → ((2 · 𝑃) + 𝑇) ∈ ℂ) |
| 33 | 20 | simp1d 1142 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 ∈ ℂ) |
| 34 | quart.t0 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑇 ≠ 0) | |
| 35 | 33, 31, 34 | divcld 11965 | . . . . . . . . 9 ⊢ (𝜑 → (𝑈 / 𝑇) ∈ ℂ) |
| 36 | 32, 35 | addcld 11200 | . . . . . . . 8 ⊢ (𝜑 → (((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) ∈ ℂ) |
| 37 | 3cn 12274 | . . . . . . . . 9 ⊢ 3 ∈ ℂ | |
| 38 | 37 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 3 ∈ ℂ) |
| 39 | 3ne0 12299 | . . . . . . . . 9 ⊢ 3 ≠ 0 | |
| 40 | 39 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 3 ≠ 0) |
| 41 | 36, 38, 40 | divcld 11965 | . . . . . . 7 ⊢ (𝜑 → ((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3) ∈ ℂ) |
| 42 | 41 | negcld 11527 | . . . . . 6 ⊢ (𝜑 → -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3) ∈ ℂ) |
| 43 | 2, 42 | eqeltrd 2829 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 44 | 43 | sqrtcld 15413 | . . . 4 ⊢ (𝜑 → (√‘𝑀) ∈ ℂ) |
| 45 | 44 | halfcld 12434 | . . 3 ⊢ (𝜑 → ((√‘𝑀) / 2) ∈ ℂ) |
| 46 | 1, 45 | eqeltrd 2829 | . 2 ⊢ (𝜑 → 𝑆 ∈ ℂ) |
| 47 | 46, 43, 31 | 3jca 1128 | 1 ⊢ (𝜑 → (𝑆 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑇 ∈ ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 − cmin 11412 -cneg 11413 / cdiv 11842 ℕcn 12193 2c2 12248 3c3 12249 4c4 12250 5c5 12251 6c6 12252 7c7 12253 8c8 12254 ;cdc 12656 ↑cexp 14033 √csqrt 15206 ↑𝑐ccxp 26471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ioc 13318 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-fac 14246 df-bc 14275 df-hash 14303 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-ef 16040 df-sin 16042 df-cos 16043 df-pi 16045 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-mulg 19007 df-cntz 19256 df-cmn 19719 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-fbas 21268 df-fg 21269 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-nei 22992 df-lp 23030 df-perf 23031 df-cn 23121 df-cnp 23122 df-haus 23209 df-tx 23456 df-hmeo 23649 df-fil 23740 df-fm 23832 df-flim 23833 df-flf 23834 df-xms 24215 df-ms 24216 df-tms 24217 df-cncf 24778 df-limc 25774 df-dv 25775 df-log 26472 df-cxp 26473 |
| This theorem is referenced by: quartlem4 26777 quart 26778 |
| Copyright terms: Public domain | W3C validator |