MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumlema Structured version   Visualization version   GIF version

Theorem dchrvmasumlema 27544
Description: Lemma for dchrvmasum 27569 and dchrvmasumif 27547. Apply dchrisum 27536 for the function log(𝑦) / 𝑦, which is decreasing above e (or above 3, the nearest integer bound). (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrvmasumlema.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · ((log‘𝑎) / 𝑎)))
Assertion
Ref Expression
dchrvmasumlema (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦))))
Distinct variable groups:   𝑡,𝑐,𝑦, 1   𝐹,𝑐,𝑡,𝑦   𝑎,𝑐,𝑡,𝑦   𝑁,𝑐,𝑡,𝑦   𝜑,𝑐,𝑡   𝑦,𝑍   𝐷,𝑐,𝑡,𝑦   𝐿,𝑎,𝑐,𝑡,𝑦   𝑋,𝑎,𝑐,𝑡,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐷(𝑎)   1 (𝑎)   𝐹(𝑎)   𝐺(𝑦,𝑡,𝑎,𝑐)   𝑁(𝑎)   𝑍(𝑡,𝑎,𝑐)

Proof of Theorem dchrvmasumlema
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
2 rpvmasum.l . . 3 𝐿 = (ℤRHom‘𝑍)
3 rpvmasum.a . . 3 (𝜑𝑁 ∈ ℕ)
4 rpvmasum.g . . 3 𝐺 = (DChr‘𝑁)
5 rpvmasum.d . . 3 𝐷 = (Base‘𝐺)
6 rpvmasum.1 . . 3 1 = (0g𝐺)
7 dchrisum.b . . 3 (𝜑𝑋𝐷)
8 dchrisum.n1 . . 3 (𝜑𝑋1 )
9 fveq2 6906 . . . 4 (𝑛 = 𝑥 → (log‘𝑛) = (log‘𝑥))
10 id 22 . . . 4 (𝑛 = 𝑥𝑛 = 𝑥)
119, 10oveq12d 7449 . . 3 (𝑛 = 𝑥 → ((log‘𝑛) / 𝑛) = ((log‘𝑥) / 𝑥))
12 3nn 12345 . . . 4 3 ∈ ℕ
1312a1i 11 . . 3 (𝜑 → 3 ∈ ℕ)
14 relogcl 26617 . . . . 5 (𝑛 ∈ ℝ+ → (log‘𝑛) ∈ ℝ)
15 rerpdivcl 13065 . . . . 5 (((log‘𝑛) ∈ ℝ ∧ 𝑛 ∈ ℝ+) → ((log‘𝑛) / 𝑛) ∈ ℝ)
1614, 15mpancom 688 . . . 4 (𝑛 ∈ ℝ+ → ((log‘𝑛) / 𝑛) ∈ ℝ)
1716adantl 481 . . 3 ((𝜑𝑛 ∈ ℝ+) → ((log‘𝑛) / 𝑛) ∈ ℝ)
18 simp3r 1203 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛𝑛𝑥)) → 𝑛𝑥)
19 simp2l 1200 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛𝑛𝑥)) → 𝑛 ∈ ℝ+)
2019rpred 13077 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛𝑛𝑥)) → 𝑛 ∈ ℝ)
21 ere 16125 . . . . . . 7 e ∈ ℝ
2221a1i 11 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛𝑛𝑥)) → e ∈ ℝ)
23 3re 12346 . . . . . . 7 3 ∈ ℝ
2423a1i 11 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛𝑛𝑥)) → 3 ∈ ℝ)
25 egt2lt3 16242 . . . . . . . . 9 (2 < e ∧ e < 3)
2625simpri 485 . . . . . . . 8 e < 3
2721, 23, 26ltleii 11384 . . . . . . 7 e ≤ 3
2827a1i 11 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛𝑛𝑥)) → e ≤ 3)
29 simp3l 1202 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛𝑛𝑥)) → 3 ≤ 𝑛)
3022, 24, 20, 28, 29letrd 11418 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛𝑛𝑥)) → e ≤ 𝑛)
31 simp2r 1201 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛𝑛𝑥)) → 𝑥 ∈ ℝ+)
3231rpred 13077 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛𝑛𝑥)) → 𝑥 ∈ ℝ)
3322, 20, 32, 30, 18letrd 11418 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛𝑛𝑥)) → e ≤ 𝑥)
34 logdivle 26664 . . . . 5 (((𝑛 ∈ ℝ ∧ e ≤ 𝑛) ∧ (𝑥 ∈ ℝ ∧ e ≤ 𝑥)) → (𝑛𝑥 ↔ ((log‘𝑥) / 𝑥) ≤ ((log‘𝑛) / 𝑛)))
3520, 30, 32, 33, 34syl22anc 839 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛𝑛𝑥)) → (𝑛𝑥 ↔ ((log‘𝑥) / 𝑥) ≤ ((log‘𝑛) / 𝑛)))
3618, 35mpbid 232 . . 3 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛𝑛𝑥)) → ((log‘𝑥) / 𝑥) ≤ ((log‘𝑛) / 𝑛))
37 rpcn 13045 . . . . . . 7 (𝑛 ∈ ℝ+𝑛 ∈ ℂ)
3837cxp1d 26748 . . . . . 6 (𝑛 ∈ ℝ+ → (𝑛𝑐1) = 𝑛)
3938oveq2d 7447 . . . . 5 (𝑛 ∈ ℝ+ → ((log‘𝑛) / (𝑛𝑐1)) = ((log‘𝑛) / 𝑛))
4039mpteq2ia 5245 . . . 4 (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐1))) = (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / 𝑛))
41 1rp 13038 . . . . 5 1 ∈ ℝ+
42 cxploglim 27021 . . . . 5 (1 ∈ ℝ+ → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐1))) ⇝𝑟 0)
4341, 42mp1i 13 . . . 4 (𝜑 → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐1))) ⇝𝑟 0)
4440, 43eqbrtrrid 5179 . . 3 (𝜑 → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / 𝑛)) ⇝𝑟 0)
45 dchrvmasumlema.f . . . 4 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · ((log‘𝑎) / 𝑎)))
46 2fveq3 6911 . . . . . 6 (𝑎 = 𝑛 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑛)))
47 fveq2 6906 . . . . . . 7 (𝑎 = 𝑛 → (log‘𝑎) = (log‘𝑛))
48 id 22 . . . . . . 7 (𝑎 = 𝑛𝑎 = 𝑛)
4947, 48oveq12d 7449 . . . . . 6 (𝑎 = 𝑛 → ((log‘𝑎) / 𝑎) = ((log‘𝑛) / 𝑛))
5046, 49oveq12d 7449 . . . . 5 (𝑎 = 𝑛 → ((𝑋‘(𝐿𝑎)) · ((log‘𝑎) / 𝑎)) = ((𝑋‘(𝐿𝑛)) · ((log‘𝑛) / 𝑛)))
5150cbvmptv 5255 . . . 4 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · ((log‘𝑎) / 𝑎))) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · ((log‘𝑛) / 𝑛)))
5245, 51eqtri 2765 . . 3 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · ((log‘𝑛) / 𝑛)))
531, 2, 3, 4, 5, 6, 7, 8, 11, 13, 17, 36, 44, 52dchrisum 27536 . 2 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · ((log‘𝑥) / 𝑥))))
54 2fveq3 6911 . . . . . . . 8 (𝑥 = 𝑦 → (seq1( + , 𝐹)‘(⌊‘𝑥)) = (seq1( + , 𝐹)‘(⌊‘𝑦)))
5554fvoveq1d 7453 . . . . . . 7 (𝑥 = 𝑦 → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)))
56 fveq2 6906 . . . . . . . . 9 (𝑥 = 𝑦 → (log‘𝑥) = (log‘𝑦))
57 id 22 . . . . . . . . 9 (𝑥 = 𝑦𝑥 = 𝑦)
5856, 57oveq12d 7449 . . . . . . . 8 (𝑥 = 𝑦 → ((log‘𝑥) / 𝑥) = ((log‘𝑦) / 𝑦))
5958oveq2d 7447 . . . . . . 7 (𝑥 = 𝑦 → (𝑐 · ((log‘𝑥) / 𝑥)) = (𝑐 · ((log‘𝑦) / 𝑦)))
6055, 59breq12d 5156 . . . . . 6 (𝑥 = 𝑦 → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · ((log‘𝑥) / 𝑥)) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦))))
6160cbvralvw 3237 . . . . 5 (∀𝑥 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · ((log‘𝑥) / 𝑥)) ↔ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦)))
6261anbi2i 623 . . . 4 ((seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · ((log‘𝑥) / 𝑥))) ↔ (seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦))))
6362rexbii 3094 . . 3 (∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · ((log‘𝑥) / 𝑥))) ↔ ∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦))))
6463exbii 1848 . 2 (∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · ((log‘𝑥) / 𝑥))) ↔ ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦))))
6553, 64sylib 218 1 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wne 2940  wral 3061  wrex 3070   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  +∞cpnf 11292   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  3c3 12322  +crp 13034  [,)cico 13389  cfl 13830  seqcseq 14042  abscabs 15273  cli 15520  𝑟 crli 15521  eceu 16098  Basecbs 17247  0gc0g 17484  ℤRHomczrh 21510  ℤ/nczn 21513  logclog 26596  𝑐ccxp 26597  DChrcdchr 27276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-ec 8747  df-qs 8751  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-e 16104  df-sin 16105  df-cos 16106  df-pi 16108  df-dvds 16291  df-gcd 16532  df-phi 16803  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-qus 17554  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-nsg 19142  df-eqg 19143  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-lmod 20860  df-lss 20930  df-lsp 20970  df-sra 21172  df-rgmod 21173  df-lidl 21218  df-rsp 21219  df-2idl 21260  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-zring 21458  df-zrh 21514  df-zn 21517  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-cxp 26599  df-dchr 27277
This theorem is referenced by:  dchrvmasumif  27547
  Copyright terms: Public domain W3C validator