![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrvmasumlema | Structured version Visualization version GIF version |
Description: Lemma for dchrvmasum 25787 and dchrvmasumif 25765. Apply dchrisum 25754 for the function log(𝑦) / 𝑦, which is decreasing above e (or above 3, the nearest integer bound). (Contributed by Mario Carneiro, 5-May-2016.) |
Ref | Expression |
---|---|
rpvmasum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
rpvmasum.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
rpvmasum.a | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
rpvmasum.g | ⊢ 𝐺 = (DChr‘𝑁) |
rpvmasum.d | ⊢ 𝐷 = (Base‘𝐺) |
rpvmasum.1 | ⊢ 1 = (0g‘𝐺) |
dchrisum.b | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchrisum.n1 | ⊢ (𝜑 → 𝑋 ≠ 1 ) |
dchrvmasumlema.f | ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · ((log‘𝑎) / 𝑎))) |
Ref | Expression |
---|---|
dchrvmasumlema | ⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpvmasum.z | . . 3 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
2 | rpvmasum.l | . . 3 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
3 | rpvmasum.a | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
4 | rpvmasum.g | . . 3 ⊢ 𝐺 = (DChr‘𝑁) | |
5 | rpvmasum.d | . . 3 ⊢ 𝐷 = (Base‘𝐺) | |
6 | rpvmasum.1 | . . 3 ⊢ 1 = (0g‘𝐺) | |
7 | dchrisum.b | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
8 | dchrisum.n1 | . . 3 ⊢ (𝜑 → 𝑋 ≠ 1 ) | |
9 | fveq2 6545 | . . . 4 ⊢ (𝑛 = 𝑥 → (log‘𝑛) = (log‘𝑥)) | |
10 | id 22 | . . . 4 ⊢ (𝑛 = 𝑥 → 𝑛 = 𝑥) | |
11 | 9, 10 | oveq12d 7041 | . . 3 ⊢ (𝑛 = 𝑥 → ((log‘𝑛) / 𝑛) = ((log‘𝑥) / 𝑥)) |
12 | 3nn 11570 | . . . 4 ⊢ 3 ∈ ℕ | |
13 | 12 | a1i 11 | . . 3 ⊢ (𝜑 → 3 ∈ ℕ) |
14 | relogcl 24844 | . . . . 5 ⊢ (𝑛 ∈ ℝ+ → (log‘𝑛) ∈ ℝ) | |
15 | rerpdivcl 12273 | . . . . 5 ⊢ (((log‘𝑛) ∈ ℝ ∧ 𝑛 ∈ ℝ+) → ((log‘𝑛) / 𝑛) ∈ ℝ) | |
16 | 14, 15 | mpancom 684 | . . . 4 ⊢ (𝑛 ∈ ℝ+ → ((log‘𝑛) / 𝑛) ∈ ℝ) |
17 | 16 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ+) → ((log‘𝑛) / 𝑛) ∈ ℝ) |
18 | simp3r 1195 | . . . 4 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑛 ≤ 𝑥) | |
19 | simp2l 1192 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑛 ∈ ℝ+) | |
20 | 19 | rpred 12285 | . . . . 5 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑛 ∈ ℝ) |
21 | ere 15279 | . . . . . . 7 ⊢ e ∈ ℝ | |
22 | 21 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → e ∈ ℝ) |
23 | 3re 11571 | . . . . . . 7 ⊢ 3 ∈ ℝ | |
24 | 23 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 3 ∈ ℝ) |
25 | egt2lt3 15396 | . . . . . . . . 9 ⊢ (2 < e ∧ e < 3) | |
26 | 25 | simpri 486 | . . . . . . . 8 ⊢ e < 3 |
27 | 21, 23, 26 | ltleii 10616 | . . . . . . 7 ⊢ e ≤ 3 |
28 | 27 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → e ≤ 3) |
29 | simp3l 1194 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 3 ≤ 𝑛) | |
30 | 22, 24, 20, 28, 29 | letrd 10650 | . . . . 5 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → e ≤ 𝑛) |
31 | simp2r 1193 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑥 ∈ ℝ+) | |
32 | 31 | rpred 12285 | . . . . 5 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑥 ∈ ℝ) |
33 | 22, 20, 32, 30, 18 | letrd 10650 | . . . . 5 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → e ≤ 𝑥) |
34 | logdivle 24890 | . . . . 5 ⊢ (((𝑛 ∈ ℝ ∧ e ≤ 𝑛) ∧ (𝑥 ∈ ℝ ∧ e ≤ 𝑥)) → (𝑛 ≤ 𝑥 ↔ ((log‘𝑥) / 𝑥) ≤ ((log‘𝑛) / 𝑛))) | |
35 | 20, 30, 32, 33, 34 | syl22anc 835 | . . . 4 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (𝑛 ≤ 𝑥 ↔ ((log‘𝑥) / 𝑥) ≤ ((log‘𝑛) / 𝑛))) |
36 | 18, 35 | mpbid 233 | . . 3 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → ((log‘𝑥) / 𝑥) ≤ ((log‘𝑛) / 𝑛)) |
37 | rpcn 12253 | . . . . . . 7 ⊢ (𝑛 ∈ ℝ+ → 𝑛 ∈ ℂ) | |
38 | 37 | cxp1d 24974 | . . . . . 6 ⊢ (𝑛 ∈ ℝ+ → (𝑛↑𝑐1) = 𝑛) |
39 | 38 | oveq2d 7039 | . . . . 5 ⊢ (𝑛 ∈ ℝ+ → ((log‘𝑛) / (𝑛↑𝑐1)) = ((log‘𝑛) / 𝑛)) |
40 | 39 | mpteq2ia 5058 | . . . 4 ⊢ (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛↑𝑐1))) = (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / 𝑛)) |
41 | 1rp 12247 | . . . . 5 ⊢ 1 ∈ ℝ+ | |
42 | cxploglim 25241 | . . . . 5 ⊢ (1 ∈ ℝ+ → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛↑𝑐1))) ⇝𝑟 0) | |
43 | 41, 42 | mp1i 13 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛↑𝑐1))) ⇝𝑟 0) |
44 | 40, 43 | eqbrtrrid 5004 | . . 3 ⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / 𝑛)) ⇝𝑟 0) |
45 | dchrvmasumlema.f | . . . 4 ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · ((log‘𝑎) / 𝑎))) | |
46 | 2fveq3 6550 | . . . . . 6 ⊢ (𝑎 = 𝑛 → (𝑋‘(𝐿‘𝑎)) = (𝑋‘(𝐿‘𝑛))) | |
47 | fveq2 6545 | . . . . . . 7 ⊢ (𝑎 = 𝑛 → (log‘𝑎) = (log‘𝑛)) | |
48 | id 22 | . . . . . . 7 ⊢ (𝑎 = 𝑛 → 𝑎 = 𝑛) | |
49 | 47, 48 | oveq12d 7041 | . . . . . 6 ⊢ (𝑎 = 𝑛 → ((log‘𝑎) / 𝑎) = ((log‘𝑛) / 𝑛)) |
50 | 46, 49 | oveq12d 7041 | . . . . 5 ⊢ (𝑎 = 𝑛 → ((𝑋‘(𝐿‘𝑎)) · ((log‘𝑎) / 𝑎)) = ((𝑋‘(𝐿‘𝑛)) · ((log‘𝑛) / 𝑛))) |
51 | 50 | cbvmptv 5068 | . . . 4 ⊢ (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · ((log‘𝑎) / 𝑎))) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) · ((log‘𝑛) / 𝑛))) |
52 | 45, 51 | eqtri 2821 | . . 3 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) · ((log‘𝑛) / 𝑛))) |
53 | 1, 2, 3, 4, 5, 6, 7, 8, 11, 13, 17, 36, 44, 52 | dchrisum 25754 | . 2 ⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · ((log‘𝑥) / 𝑥)))) |
54 | 2fveq3 6550 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (seq1( + , 𝐹)‘(⌊‘𝑥)) = (seq1( + , 𝐹)‘(⌊‘𝑦))) | |
55 | 54 | fvoveq1d 7045 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡))) |
56 | fveq2 6545 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (log‘𝑥) = (log‘𝑦)) | |
57 | id 22 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
58 | 56, 57 | oveq12d 7041 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → ((log‘𝑥) / 𝑥) = ((log‘𝑦) / 𝑦)) |
59 | 58 | oveq2d 7039 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑐 · ((log‘𝑥) / 𝑥)) = (𝑐 · ((log‘𝑦) / 𝑦))) |
60 | 55, 59 | breq12d 4981 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · ((log‘𝑥) / 𝑥)) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦)))) |
61 | 60 | cbvralv 3405 | . . . . 5 ⊢ (∀𝑥 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · ((log‘𝑥) / 𝑥)) ↔ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦))) |
62 | 61 | anbi2i 622 | . . . 4 ⊢ ((seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · ((log‘𝑥) / 𝑥))) ↔ (seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦)))) |
63 | 62 | rexbii 3213 | . . 3 ⊢ (∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · ((log‘𝑥) / 𝑥))) ↔ ∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦)))) |
64 | 63 | exbii 1833 | . 2 ⊢ (∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · ((log‘𝑥) / 𝑥))) ↔ ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦)))) |
65 | 53, 64 | sylib 219 | 1 ⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1080 = wceq 1525 ∃wex 1765 ∈ wcel 2083 ≠ wne 2986 ∀wral 3107 ∃wrex 3108 class class class wbr 4968 ↦ cmpt 5047 ‘cfv 6232 (class class class)co 7023 ℝcr 10389 0cc0 10390 1c1 10391 + caddc 10393 · cmul 10395 +∞cpnf 10525 < clt 10528 ≤ cle 10529 − cmin 10723 / cdiv 11151 ℕcn 11492 2c2 11546 3c3 11547 ℝ+crp 12243 [,)cico 12594 ⌊cfl 13014 seqcseq 13223 abscabs 14431 ⇝ cli 14679 ⇝𝑟 crli 14680 eceu 15253 Basecbs 16316 0gc0g 16546 ℤRHomczrh 20333 ℤ/nℤczn 20336 logclog 24823 ↑𝑐ccxp 24824 DChrcdchr 25494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-inf2 8957 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 ax-pre-sup 10468 ax-addf 10469 ax-mulf 10470 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-fal 1538 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-int 4789 df-iun 4833 df-iin 4834 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-se 5410 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-isom 6241 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-of 7274 df-om 7444 df-1st 7552 df-2nd 7553 df-supp 7689 df-tpos 7750 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-1o 7960 df-2o 7961 df-oadd 7964 df-er 8146 df-ec 8148 df-qs 8152 df-map 8265 df-pm 8266 df-ixp 8318 df-en 8365 df-dom 8366 df-sdom 8367 df-fin 8368 df-fsupp 8687 df-fi 8728 df-sup 8759 df-inf 8760 df-oi 8827 df-card 9221 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-div 11152 df-nn 11493 df-2 11554 df-3 11555 df-4 11556 df-5 11557 df-6 11558 df-7 11559 df-8 11560 df-9 11561 df-n0 11752 df-xnn0 11822 df-z 11836 df-dec 11953 df-uz 12098 df-q 12202 df-rp 12244 df-xneg 12361 df-xadd 12362 df-xmul 12363 df-ioo 12596 df-ioc 12597 df-ico 12598 df-icc 12599 df-fz 12747 df-fzo 12888 df-fl 13016 df-mod 13092 df-seq 13224 df-exp 13284 df-fac 13488 df-bc 13517 df-hash 13545 df-shft 14264 df-cj 14296 df-re 14297 df-im 14298 df-sqrt 14432 df-abs 14433 df-limsup 14666 df-clim 14683 df-rlim 14684 df-sum 14881 df-ef 15258 df-e 15259 df-sin 15260 df-cos 15261 df-pi 15263 df-dvds 15445 df-gcd 15681 df-phi 15936 df-struct 16318 df-ndx 16319 df-slot 16320 df-base 16322 df-sets 16323 df-ress 16324 df-plusg 16411 df-mulr 16412 df-starv 16413 df-sca 16414 df-vsca 16415 df-ip 16416 df-tset 16417 df-ple 16418 df-ds 16420 df-unif 16421 df-hom 16422 df-cco 16423 df-rest 16529 df-topn 16530 df-0g 16548 df-gsum 16549 df-topgen 16550 df-pt 16551 df-prds 16554 df-xrs 16608 df-qtop 16613 df-imas 16614 df-qus 16615 df-xps 16616 df-mre 16690 df-mrc 16691 df-acs 16693 df-mgm 17685 df-sgrp 17727 df-mnd 17738 df-mhm 17778 df-submnd 17779 df-grp 17868 df-minusg 17869 df-sbg 17870 df-mulg 17986 df-subg 18034 df-nsg 18035 df-eqg 18036 df-ghm 18101 df-cntz 18192 df-cmn 18639 df-abl 18640 df-mgp 18934 df-ur 18946 df-ring 18993 df-cring 18994 df-oppr 19067 df-dvdsr 19085 df-unit 19086 df-invr 19116 df-rnghom 19161 df-subrg 19227 df-lmod 19330 df-lss 19398 df-lsp 19438 df-sra 19638 df-rgmod 19639 df-lidl 19640 df-rsp 19641 df-2idl 19698 df-psmet 20223 df-xmet 20224 df-met 20225 df-bl 20226 df-mopn 20227 df-fbas 20228 df-fg 20229 df-cnfld 20232 df-zring 20304 df-zrh 20337 df-zn 20340 df-top 21190 df-topon 21207 df-topsp 21229 df-bases 21242 df-cld 21315 df-ntr 21316 df-cls 21317 df-nei 21394 df-lp 21432 df-perf 21433 df-cn 21523 df-cnp 21524 df-haus 21611 df-tx 21858 df-hmeo 22051 df-fil 22142 df-fm 22234 df-flim 22235 df-flf 22236 df-xms 22617 df-ms 22618 df-tms 22619 df-cncf 23173 df-limc 24151 df-dv 24152 df-log 24825 df-cxp 24826 df-dchr 25495 |
This theorem is referenced by: dchrvmasumif 25765 |
Copyright terms: Public domain | W3C validator |