Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dchrvmasumlema | Structured version Visualization version GIF version |
Description: Lemma for dchrvmasum 26578 and dchrvmasumif 26556. Apply dchrisum 26545 for the function log(𝑦) / 𝑦, which is decreasing above e (or above 3, the nearest integer bound). (Contributed by Mario Carneiro, 5-May-2016.) |
Ref | Expression |
---|---|
rpvmasum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
rpvmasum.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
rpvmasum.a | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
rpvmasum.g | ⊢ 𝐺 = (DChr‘𝑁) |
rpvmasum.d | ⊢ 𝐷 = (Base‘𝐺) |
rpvmasum.1 | ⊢ 1 = (0g‘𝐺) |
dchrisum.b | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchrisum.n1 | ⊢ (𝜑 → 𝑋 ≠ 1 ) |
dchrvmasumlema.f | ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · ((log‘𝑎) / 𝑎))) |
Ref | Expression |
---|---|
dchrvmasumlema | ⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpvmasum.z | . . 3 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
2 | rpvmasum.l | . . 3 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
3 | rpvmasum.a | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
4 | rpvmasum.g | . . 3 ⊢ 𝐺 = (DChr‘𝑁) | |
5 | rpvmasum.d | . . 3 ⊢ 𝐷 = (Base‘𝐺) | |
6 | rpvmasum.1 | . . 3 ⊢ 1 = (0g‘𝐺) | |
7 | dchrisum.b | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
8 | dchrisum.n1 | . . 3 ⊢ (𝜑 → 𝑋 ≠ 1 ) | |
9 | fveq2 6756 | . . . 4 ⊢ (𝑛 = 𝑥 → (log‘𝑛) = (log‘𝑥)) | |
10 | id 22 | . . . 4 ⊢ (𝑛 = 𝑥 → 𝑛 = 𝑥) | |
11 | 9, 10 | oveq12d 7273 | . . 3 ⊢ (𝑛 = 𝑥 → ((log‘𝑛) / 𝑛) = ((log‘𝑥) / 𝑥)) |
12 | 3nn 11982 | . . . 4 ⊢ 3 ∈ ℕ | |
13 | 12 | a1i 11 | . . 3 ⊢ (𝜑 → 3 ∈ ℕ) |
14 | relogcl 25636 | . . . . 5 ⊢ (𝑛 ∈ ℝ+ → (log‘𝑛) ∈ ℝ) | |
15 | rerpdivcl 12689 | . . . . 5 ⊢ (((log‘𝑛) ∈ ℝ ∧ 𝑛 ∈ ℝ+) → ((log‘𝑛) / 𝑛) ∈ ℝ) | |
16 | 14, 15 | mpancom 684 | . . . 4 ⊢ (𝑛 ∈ ℝ+ → ((log‘𝑛) / 𝑛) ∈ ℝ) |
17 | 16 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ+) → ((log‘𝑛) / 𝑛) ∈ ℝ) |
18 | simp3r 1200 | . . . 4 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑛 ≤ 𝑥) | |
19 | simp2l 1197 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑛 ∈ ℝ+) | |
20 | 19 | rpred 12701 | . . . . 5 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑛 ∈ ℝ) |
21 | ere 15726 | . . . . . . 7 ⊢ e ∈ ℝ | |
22 | 21 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → e ∈ ℝ) |
23 | 3re 11983 | . . . . . . 7 ⊢ 3 ∈ ℝ | |
24 | 23 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 3 ∈ ℝ) |
25 | egt2lt3 15843 | . . . . . . . . 9 ⊢ (2 < e ∧ e < 3) | |
26 | 25 | simpri 485 | . . . . . . . 8 ⊢ e < 3 |
27 | 21, 23, 26 | ltleii 11028 | . . . . . . 7 ⊢ e ≤ 3 |
28 | 27 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → e ≤ 3) |
29 | simp3l 1199 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 3 ≤ 𝑛) | |
30 | 22, 24, 20, 28, 29 | letrd 11062 | . . . . 5 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → e ≤ 𝑛) |
31 | simp2r 1198 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑥 ∈ ℝ+) | |
32 | 31 | rpred 12701 | . . . . 5 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑥 ∈ ℝ) |
33 | 22, 20, 32, 30, 18 | letrd 11062 | . . . . 5 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → e ≤ 𝑥) |
34 | logdivle 25682 | . . . . 5 ⊢ (((𝑛 ∈ ℝ ∧ e ≤ 𝑛) ∧ (𝑥 ∈ ℝ ∧ e ≤ 𝑥)) → (𝑛 ≤ 𝑥 ↔ ((log‘𝑥) / 𝑥) ≤ ((log‘𝑛) / 𝑛))) | |
35 | 20, 30, 32, 33, 34 | syl22anc 835 | . . . 4 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (𝑛 ≤ 𝑥 ↔ ((log‘𝑥) / 𝑥) ≤ ((log‘𝑛) / 𝑛))) |
36 | 18, 35 | mpbid 231 | . . 3 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → ((log‘𝑥) / 𝑥) ≤ ((log‘𝑛) / 𝑛)) |
37 | rpcn 12669 | . . . . . . 7 ⊢ (𝑛 ∈ ℝ+ → 𝑛 ∈ ℂ) | |
38 | 37 | cxp1d 25766 | . . . . . 6 ⊢ (𝑛 ∈ ℝ+ → (𝑛↑𝑐1) = 𝑛) |
39 | 38 | oveq2d 7271 | . . . . 5 ⊢ (𝑛 ∈ ℝ+ → ((log‘𝑛) / (𝑛↑𝑐1)) = ((log‘𝑛) / 𝑛)) |
40 | 39 | mpteq2ia 5173 | . . . 4 ⊢ (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛↑𝑐1))) = (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / 𝑛)) |
41 | 1rp 12663 | . . . . 5 ⊢ 1 ∈ ℝ+ | |
42 | cxploglim 26032 | . . . . 5 ⊢ (1 ∈ ℝ+ → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛↑𝑐1))) ⇝𝑟 0) | |
43 | 41, 42 | mp1i 13 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛↑𝑐1))) ⇝𝑟 0) |
44 | 40, 43 | eqbrtrrid 5106 | . . 3 ⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / 𝑛)) ⇝𝑟 0) |
45 | dchrvmasumlema.f | . . . 4 ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · ((log‘𝑎) / 𝑎))) | |
46 | 2fveq3 6761 | . . . . . 6 ⊢ (𝑎 = 𝑛 → (𝑋‘(𝐿‘𝑎)) = (𝑋‘(𝐿‘𝑛))) | |
47 | fveq2 6756 | . . . . . . 7 ⊢ (𝑎 = 𝑛 → (log‘𝑎) = (log‘𝑛)) | |
48 | id 22 | . . . . . . 7 ⊢ (𝑎 = 𝑛 → 𝑎 = 𝑛) | |
49 | 47, 48 | oveq12d 7273 | . . . . . 6 ⊢ (𝑎 = 𝑛 → ((log‘𝑎) / 𝑎) = ((log‘𝑛) / 𝑛)) |
50 | 46, 49 | oveq12d 7273 | . . . . 5 ⊢ (𝑎 = 𝑛 → ((𝑋‘(𝐿‘𝑎)) · ((log‘𝑎) / 𝑎)) = ((𝑋‘(𝐿‘𝑛)) · ((log‘𝑛) / 𝑛))) |
51 | 50 | cbvmptv 5183 | . . . 4 ⊢ (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · ((log‘𝑎) / 𝑎))) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) · ((log‘𝑛) / 𝑛))) |
52 | 45, 51 | eqtri 2766 | . . 3 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) · ((log‘𝑛) / 𝑛))) |
53 | 1, 2, 3, 4, 5, 6, 7, 8, 11, 13, 17, 36, 44, 52 | dchrisum 26545 | . 2 ⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · ((log‘𝑥) / 𝑥)))) |
54 | 2fveq3 6761 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (seq1( + , 𝐹)‘(⌊‘𝑥)) = (seq1( + , 𝐹)‘(⌊‘𝑦))) | |
55 | 54 | fvoveq1d 7277 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡))) |
56 | fveq2 6756 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (log‘𝑥) = (log‘𝑦)) | |
57 | id 22 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
58 | 56, 57 | oveq12d 7273 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → ((log‘𝑥) / 𝑥) = ((log‘𝑦) / 𝑦)) |
59 | 58 | oveq2d 7271 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑐 · ((log‘𝑥) / 𝑥)) = (𝑐 · ((log‘𝑦) / 𝑦))) |
60 | 55, 59 | breq12d 5083 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · ((log‘𝑥) / 𝑥)) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦)))) |
61 | 60 | cbvralvw 3372 | . . . . 5 ⊢ (∀𝑥 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · ((log‘𝑥) / 𝑥)) ↔ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦))) |
62 | 61 | anbi2i 622 | . . . 4 ⊢ ((seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · ((log‘𝑥) / 𝑥))) ↔ (seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦)))) |
63 | 62 | rexbii 3177 | . . 3 ⊢ (∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · ((log‘𝑥) / 𝑥))) ↔ ∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦)))) |
64 | 63 | exbii 1851 | . 2 ⊢ (∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · ((log‘𝑥) / 𝑥))) ↔ ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦)))) |
65 | 53, 64 | sylib 217 | 1 ⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 class class class wbr 5070 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 +∞cpnf 10937 < clt 10940 ≤ cle 10941 − cmin 11135 / cdiv 11562 ℕcn 11903 2c2 11958 3c3 11959 ℝ+crp 12659 [,)cico 13010 ⌊cfl 13438 seqcseq 13649 abscabs 14873 ⇝ cli 15121 ⇝𝑟 crli 15122 eceu 15700 Basecbs 16840 0gc0g 17067 ℤRHomczrh 20613 ℤ/nℤczn 20616 logclog 25615 ↑𝑐ccxp 25616 DChrcdchr 26285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-ec 8458 df-qs 8462 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-xnn0 12236 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-ef 15705 df-e 15706 df-sin 15707 df-cos 15708 df-pi 15710 df-dvds 15892 df-gcd 16130 df-phi 16395 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-qus 17137 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-nsg 18668 df-eqg 18669 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-rnghom 19874 df-subrg 19937 df-lmod 20040 df-lss 20109 df-lsp 20149 df-sra 20349 df-rgmod 20350 df-lidl 20351 df-rsp 20352 df-2idl 20416 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-zring 20583 df-zrh 20617 df-zn 20620 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-limc 24935 df-dv 24936 df-log 25617 df-cxp 25618 df-dchr 26286 |
This theorem is referenced by: dchrvmasumif 26556 |
Copyright terms: Public domain | W3C validator |