MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsum1 Structured version   Visualization version   GIF version

Theorem fsum1 15654
Description: The finite sum of 𝐴(𝑘) from 𝑘 = 𝑀 to 𝑀 (i.e. a sum with only one term) is 𝐵 i.e. 𝐴(𝑀). (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 21-Apr-2014.)
Hypothesis
Ref Expression
fsum1.1 (𝑘 = 𝑀𝐴 = 𝐵)
Assertion
Ref Expression
fsum1 ((𝑀 ∈ ℤ ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ (𝑀...𝑀)𝐴 = 𝐵)
Distinct variable groups:   𝐵,𝑘   𝑘,𝑀
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fsum1
StepHypRef Expression
1 fzsn 13469 . . . 4 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
21adantr 480 . . 3 ((𝑀 ∈ ℤ ∧ 𝐵 ∈ ℂ) → (𝑀...𝑀) = {𝑀})
32sumeq1d 15607 . 2 ((𝑀 ∈ ℤ ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ (𝑀...𝑀)𝐴 = Σ𝑘 ∈ {𝑀}𝐴)
4 fsum1.1 . . 3 (𝑘 = 𝑀𝐴 = 𝐵)
54sumsn 15653 . 2 ((𝑀 ∈ ℤ ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
63, 5eqtrd 2764 1 ((𝑀 ∈ ℤ ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ (𝑀...𝑀)𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4577  (class class class)co 7349  cc 11007  cz 12471  ...cfz 13410  Σcsu 15593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594
This theorem is referenced by:  binom  15737  bcxmas  15742  isum1p  15748  bpoly1  15958  bpoly2  15964  bpoly3  15965  bpoly4  15966  cphipval  25141  itgcnlem  25689  ply1termlem  26106  plyco  26144  0dgr  26148  0dgrb  26149  coefv0  26151  coemulc  26158  vieta1lem2  26217  vieta1  26218  emcllem7  26910  1sgmprm  27108  chtublem  27120  logfacbnd3  27132  logexprlim  27134  log2sumbnd  27453  axlowdimlem16  28902  ipval2  30651  subfacval2  35170  bccolsum  35722  fwddifn0  36148  sticksstones12a  42140  sticksstones12  42141  itgspltprt  45970  stoweidlem20  46011  dirkertrigeqlem1  46089  dirkertrigeqlem3  46091
  Copyright terms: Public domain W3C validator