| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abelthlem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for abelth 26379. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| Ref | Expression |
|---|---|
| abelth.1 | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| abelth.2 | ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) |
| abelth.3 | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| abelth.4 | ⊢ (𝜑 → 0 ≤ 𝑀) |
| abelth.5 | ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} |
| abelth.6 | ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) |
| Ref | Expression |
|---|---|
| abelthlem4 | ⊢ (𝜑 → 𝐹:𝑆⟶ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz 12774 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
| 2 | 0zd 12480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 0 ∈ ℤ) | |
| 3 | fveq2 6822 | . . . . . 6 ⊢ (𝑚 = 𝑛 → (𝐴‘𝑚) = (𝐴‘𝑛)) | |
| 4 | oveq2 7354 | . . . . . 6 ⊢ (𝑚 = 𝑛 → (𝑥↑𝑚) = (𝑥↑𝑛)) | |
| 5 | 3, 4 | oveq12d 7364 | . . . . 5 ⊢ (𝑚 = 𝑛 → ((𝐴‘𝑚) · (𝑥↑𝑚)) = ((𝐴‘𝑛) · (𝑥↑𝑛))) |
| 6 | eqid 2731 | . . . . 5 ⊢ (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚))) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚))) | |
| 7 | ovex 7379 | . . . . 5 ⊢ ((𝐴‘𝑛) · (𝑥↑𝑛)) ∈ V | |
| 8 | 5, 6, 7 | fvmpt 6929 | . . . 4 ⊢ (𝑛 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚)))‘𝑛) = ((𝐴‘𝑛) · (𝑥↑𝑛))) |
| 9 | 8 | adantl 481 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚)))‘𝑛) = ((𝐴‘𝑛) · (𝑥↑𝑛))) |
| 10 | abelth.1 | . . . . . 6 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴:ℕ0⟶ℂ) |
| 12 | 11 | ffvelcdmda 7017 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℕ0) → (𝐴‘𝑛) ∈ ℂ) |
| 13 | abelth.5 | . . . . . . . 8 ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} | |
| 14 | 13 | ssrab3 4032 | . . . . . . 7 ⊢ 𝑆 ⊆ ℂ |
| 15 | 14 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 16 | 15 | sselda 3934 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ ℂ) |
| 17 | expcl 13986 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝑥↑𝑛) ∈ ℂ) | |
| 18 | 16, 17 | sylan 580 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℕ0) → (𝑥↑𝑛) ∈ ℂ) |
| 19 | 12, 18 | mulcld 11132 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝐴‘𝑛) · (𝑥↑𝑛)) ∈ ℂ) |
| 20 | abelth.2 | . . . 4 ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) | |
| 21 | abelth.3 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℝ) | |
| 22 | abelth.4 | . . . 4 ⊢ (𝜑 → 0 ≤ 𝑀) | |
| 23 | 10, 20, 21, 22, 13 | abelthlem3 26371 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → seq0( + , (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚)))) ∈ dom ⇝ ) |
| 24 | 1, 2, 9, 19, 23 | isumcl 15668 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛)) ∈ ℂ) |
| 25 | abelth.6 | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) | |
| 26 | 24, 25 | fmptd 7047 | 1 ⊢ (𝜑 → 𝐹:𝑆⟶ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 ⊆ wss 3902 class class class wbr 5091 ↦ cmpt 5172 dom cdm 5616 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 ≤ cle 11147 − cmin 11344 ℕ0cn0 12381 seqcseq 13908 ↑cexp 13968 abscabs 15141 ⇝ cli 15391 Σcsu 15593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-xadd 13012 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-psmet 21284 df-xmet 21285 df-met 21286 df-bl 21287 |
| This theorem is referenced by: abelthlem7 26376 abelthlem8 26377 abelthlem9 26378 abelth 26379 |
| Copyright terms: Public domain | W3C validator |