MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem4 Structured version   Visualization version   GIF version

Theorem abelthlem4 26433
Description: Lemma for abelth 26440. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
abelth.6 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
Assertion
Ref Expression
abelthlem4 (𝜑𝐹:𝑆⟶ℂ)
Distinct variable groups:   𝑥,𝑛,𝑧,𝑀   𝐴,𝑛,𝑥,𝑧   𝜑,𝑛,𝑥   𝑆,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)   𝐹(𝑥,𝑧,𝑛)

Proof of Theorem abelthlem4
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12903 . . 3 0 = (ℤ‘0)
2 0zd 12609 . . 3 ((𝜑𝑥𝑆) → 0 ∈ ℤ)
3 fveq2 6887 . . . . . 6 (𝑚 = 𝑛 → (𝐴𝑚) = (𝐴𝑛))
4 oveq2 7422 . . . . . 6 (𝑚 = 𝑛 → (𝑥𝑚) = (𝑥𝑛))
53, 4oveq12d 7432 . . . . 5 (𝑚 = 𝑛 → ((𝐴𝑚) · (𝑥𝑚)) = ((𝐴𝑛) · (𝑥𝑛)))
6 eqid 2734 . . . . 5 (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚))) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚)))
7 ovex 7447 . . . . 5 ((𝐴𝑛) · (𝑥𝑛)) ∈ V
85, 6, 7fvmpt 6997 . . . 4 (𝑛 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚)))‘𝑛) = ((𝐴𝑛) · (𝑥𝑛)))
98adantl 481 . . 3 (((𝜑𝑥𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚)))‘𝑛) = ((𝐴𝑛) · (𝑥𝑛)))
10 abelth.1 . . . . . 6 (𝜑𝐴:ℕ0⟶ℂ)
1110adantr 480 . . . . 5 ((𝜑𝑥𝑆) → 𝐴:ℕ0⟶ℂ)
1211ffvelcdmda 7085 . . . 4 (((𝜑𝑥𝑆) ∧ 𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℂ)
13 abelth.5 . . . . . . . 8 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
1413ssrab3 4064 . . . . . . 7 𝑆 ⊆ ℂ
1514a1i 11 . . . . . 6 (𝜑𝑆 ⊆ ℂ)
1615sselda 3965 . . . . 5 ((𝜑𝑥𝑆) → 𝑥 ∈ ℂ)
17 expcl 14103 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝑥𝑛) ∈ ℂ)
1816, 17sylan 580 . . . 4 (((𝜑𝑥𝑆) ∧ 𝑛 ∈ ℕ0) → (𝑥𝑛) ∈ ℂ)
1912, 18mulcld 11264 . . 3 (((𝜑𝑥𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝐴𝑛) · (𝑥𝑛)) ∈ ℂ)
20 abelth.2 . . . 4 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
21 abelth.3 . . . 4 (𝜑𝑀 ∈ ℝ)
22 abelth.4 . . . 4 (𝜑 → 0 ≤ 𝑀)
2310, 20, 21, 22, 13abelthlem3 26432 . . 3 ((𝜑𝑥𝑆) → seq0( + , (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚)))) ∈ dom ⇝ )
241, 2, 9, 19, 23isumcl 15780 . 2 ((𝜑𝑥𝑆) → Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)) ∈ ℂ)
25 abelth.6 . 2 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
2624, 25fmptd 7115 1 (𝜑𝐹:𝑆⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {crab 3420  wss 3933   class class class wbr 5125  cmpt 5207  dom cdm 5667  wf 6538  cfv 6542  (class class class)co 7414  cc 11136  cr 11137  0cc0 11138  1c1 11139   + caddc 11141   · cmul 11143  cle 11279  cmin 11475  0cn0 12510  seqcseq 14025  cexp 14085  abscabs 15256  cli 15503  Σcsu 15705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-inf2 9664  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-se 5620  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-er 8728  df-map 8851  df-pm 8852  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-sup 9465  df-inf 9466  df-oi 9533  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-div 11904  df-nn 12250  df-2 12312  df-3 12313  df-n0 12511  df-z 12598  df-uz 12862  df-rp 13018  df-xadd 13138  df-ico 13376  df-icc 13377  df-fz 13531  df-fzo 13678  df-fl 13815  df-seq 14026  df-exp 14086  df-hash 14353  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-limsup 15490  df-clim 15507  df-rlim 15508  df-sum 15706  df-psmet 21323  df-xmet 21324  df-met 21325  df-bl 21326
This theorem is referenced by:  abelthlem7  26437  abelthlem8  26438  abelthlem9  26439  abelth  26440
  Copyright terms: Public domain W3C validator