Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abelthlem4 | Structured version Visualization version GIF version |
Description: Lemma for abelth 25600. (Contributed by Mario Carneiro, 31-Mar-2015.) |
Ref | Expression |
---|---|
abelth.1 | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
abelth.2 | ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) |
abelth.3 | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
abelth.4 | ⊢ (𝜑 → 0 ≤ 𝑀) |
abelth.5 | ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} |
abelth.6 | ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) |
Ref | Expression |
---|---|
abelthlem4 | ⊢ (𝜑 → 𝐹:𝑆⟶ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz 12620 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
2 | 0zd 12331 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 0 ∈ ℤ) | |
3 | fveq2 6774 | . . . . . 6 ⊢ (𝑚 = 𝑛 → (𝐴‘𝑚) = (𝐴‘𝑛)) | |
4 | oveq2 7283 | . . . . . 6 ⊢ (𝑚 = 𝑛 → (𝑥↑𝑚) = (𝑥↑𝑛)) | |
5 | 3, 4 | oveq12d 7293 | . . . . 5 ⊢ (𝑚 = 𝑛 → ((𝐴‘𝑚) · (𝑥↑𝑚)) = ((𝐴‘𝑛) · (𝑥↑𝑛))) |
6 | eqid 2738 | . . . . 5 ⊢ (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚))) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚))) | |
7 | ovex 7308 | . . . . 5 ⊢ ((𝐴‘𝑛) · (𝑥↑𝑛)) ∈ V | |
8 | 5, 6, 7 | fvmpt 6875 | . . . 4 ⊢ (𝑛 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚)))‘𝑛) = ((𝐴‘𝑛) · (𝑥↑𝑛))) |
9 | 8 | adantl 482 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚)))‘𝑛) = ((𝐴‘𝑛) · (𝑥↑𝑛))) |
10 | abelth.1 | . . . . . 6 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
11 | 10 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴:ℕ0⟶ℂ) |
12 | 11 | ffvelrnda 6961 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℕ0) → (𝐴‘𝑛) ∈ ℂ) |
13 | abelth.5 | . . . . . . . 8 ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} | |
14 | 13 | ssrab3 4015 | . . . . . . 7 ⊢ 𝑆 ⊆ ℂ |
15 | 14 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
16 | 15 | sselda 3921 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ ℂ) |
17 | expcl 13800 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝑥↑𝑛) ∈ ℂ) | |
18 | 16, 17 | sylan 580 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℕ0) → (𝑥↑𝑛) ∈ ℂ) |
19 | 12, 18 | mulcld 10995 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝐴‘𝑛) · (𝑥↑𝑛)) ∈ ℂ) |
20 | abelth.2 | . . . 4 ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) | |
21 | abelth.3 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℝ) | |
22 | abelth.4 | . . . 4 ⊢ (𝜑 → 0 ≤ 𝑀) | |
23 | 10, 20, 21, 22, 13 | abelthlem3 25592 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → seq0( + , (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚)))) ∈ dom ⇝ ) |
24 | 1, 2, 9, 19, 23 | isumcl 15473 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛)) ∈ ℂ) |
25 | abelth.6 | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) | |
26 | 24, 25 | fmptd 6988 | 1 ⊢ (𝜑 → 𝐹:𝑆⟶ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {crab 3068 ⊆ wss 3887 class class class wbr 5074 ↦ cmpt 5157 dom cdm 5589 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 · cmul 10876 ≤ cle 11010 − cmin 11205 ℕ0cn0 12233 seqcseq 13721 ↑cexp 13782 abscabs 14945 ⇝ cli 15193 Σcsu 15397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-xadd 12849 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-limsup 15180 df-clim 15197 df-rlim 15198 df-sum 15398 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 |
This theorem is referenced by: abelthlem7 25597 abelthlem8 25598 abelthlem9 25599 abelth 25600 |
Copyright terms: Public domain | W3C validator |