![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abelthlem4 | Structured version Visualization version GIF version |
Description: Lemma for abelth 26503. (Contributed by Mario Carneiro, 31-Mar-2015.) |
Ref | Expression |
---|---|
abelth.1 | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
abelth.2 | ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) |
abelth.3 | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
abelth.4 | ⊢ (𝜑 → 0 ≤ 𝑀) |
abelth.5 | ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} |
abelth.6 | ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) |
Ref | Expression |
---|---|
abelthlem4 | ⊢ (𝜑 → 𝐹:𝑆⟶ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz 12945 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
2 | 0zd 12651 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 0 ∈ ℤ) | |
3 | fveq2 6920 | . . . . . 6 ⊢ (𝑚 = 𝑛 → (𝐴‘𝑚) = (𝐴‘𝑛)) | |
4 | oveq2 7456 | . . . . . 6 ⊢ (𝑚 = 𝑛 → (𝑥↑𝑚) = (𝑥↑𝑛)) | |
5 | 3, 4 | oveq12d 7466 | . . . . 5 ⊢ (𝑚 = 𝑛 → ((𝐴‘𝑚) · (𝑥↑𝑚)) = ((𝐴‘𝑛) · (𝑥↑𝑛))) |
6 | eqid 2740 | . . . . 5 ⊢ (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚))) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚))) | |
7 | ovex 7481 | . . . . 5 ⊢ ((𝐴‘𝑛) · (𝑥↑𝑛)) ∈ V | |
8 | 5, 6, 7 | fvmpt 7029 | . . . 4 ⊢ (𝑛 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚)))‘𝑛) = ((𝐴‘𝑛) · (𝑥↑𝑛))) |
9 | 8 | adantl 481 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚)))‘𝑛) = ((𝐴‘𝑛) · (𝑥↑𝑛))) |
10 | abelth.1 | . . . . . 6 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴:ℕ0⟶ℂ) |
12 | 11 | ffvelcdmda 7118 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℕ0) → (𝐴‘𝑛) ∈ ℂ) |
13 | abelth.5 | . . . . . . . 8 ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} | |
14 | 13 | ssrab3 4105 | . . . . . . 7 ⊢ 𝑆 ⊆ ℂ |
15 | 14 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
16 | 15 | sselda 4008 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ ℂ) |
17 | expcl 14130 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝑥↑𝑛) ∈ ℂ) | |
18 | 16, 17 | sylan 579 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℕ0) → (𝑥↑𝑛) ∈ ℂ) |
19 | 12, 18 | mulcld 11310 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝐴‘𝑛) · (𝑥↑𝑛)) ∈ ℂ) |
20 | abelth.2 | . . . 4 ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) | |
21 | abelth.3 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℝ) | |
22 | abelth.4 | . . . 4 ⊢ (𝜑 → 0 ≤ 𝑀) | |
23 | 10, 20, 21, 22, 13 | abelthlem3 26495 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → seq0( + , (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚)))) ∈ dom ⇝ ) |
24 | 1, 2, 9, 19, 23 | isumcl 15809 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛)) ∈ ℂ) |
25 | abelth.6 | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) | |
26 | 24, 25 | fmptd 7148 | 1 ⊢ (𝜑 → 𝐹:𝑆⟶ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 ⊆ wss 3976 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 ≤ cle 11325 − cmin 11520 ℕ0cn0 12553 seqcseq 14052 ↑cexp 14112 abscabs 15283 ⇝ cli 15530 Σcsu 15734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-xadd 13176 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 |
This theorem is referenced by: abelthlem7 26500 abelthlem8 26501 abelthlem9 26502 abelth 26503 |
Copyright terms: Public domain | W3C validator |