MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem4 Structured version   Visualization version   GIF version

Theorem abelthlem4 25593
Description: Lemma for abelth 25600. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
abelth.6 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
Assertion
Ref Expression
abelthlem4 (𝜑𝐹:𝑆⟶ℂ)
Distinct variable groups:   𝑥,𝑛,𝑧,𝑀   𝐴,𝑛,𝑥,𝑧   𝜑,𝑛,𝑥   𝑆,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)   𝐹(𝑥,𝑧,𝑛)

Proof of Theorem abelthlem4
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12620 . . 3 0 = (ℤ‘0)
2 0zd 12331 . . 3 ((𝜑𝑥𝑆) → 0 ∈ ℤ)
3 fveq2 6774 . . . . . 6 (𝑚 = 𝑛 → (𝐴𝑚) = (𝐴𝑛))
4 oveq2 7283 . . . . . 6 (𝑚 = 𝑛 → (𝑥𝑚) = (𝑥𝑛))
53, 4oveq12d 7293 . . . . 5 (𝑚 = 𝑛 → ((𝐴𝑚) · (𝑥𝑚)) = ((𝐴𝑛) · (𝑥𝑛)))
6 eqid 2738 . . . . 5 (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚))) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚)))
7 ovex 7308 . . . . 5 ((𝐴𝑛) · (𝑥𝑛)) ∈ V
85, 6, 7fvmpt 6875 . . . 4 (𝑛 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚)))‘𝑛) = ((𝐴𝑛) · (𝑥𝑛)))
98adantl 482 . . 3 (((𝜑𝑥𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚)))‘𝑛) = ((𝐴𝑛) · (𝑥𝑛)))
10 abelth.1 . . . . . 6 (𝜑𝐴:ℕ0⟶ℂ)
1110adantr 481 . . . . 5 ((𝜑𝑥𝑆) → 𝐴:ℕ0⟶ℂ)
1211ffvelrnda 6961 . . . 4 (((𝜑𝑥𝑆) ∧ 𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℂ)
13 abelth.5 . . . . . . . 8 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
1413ssrab3 4015 . . . . . . 7 𝑆 ⊆ ℂ
1514a1i 11 . . . . . 6 (𝜑𝑆 ⊆ ℂ)
1615sselda 3921 . . . . 5 ((𝜑𝑥𝑆) → 𝑥 ∈ ℂ)
17 expcl 13800 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝑥𝑛) ∈ ℂ)
1816, 17sylan 580 . . . 4 (((𝜑𝑥𝑆) ∧ 𝑛 ∈ ℕ0) → (𝑥𝑛) ∈ ℂ)
1912, 18mulcld 10995 . . 3 (((𝜑𝑥𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝐴𝑛) · (𝑥𝑛)) ∈ ℂ)
20 abelth.2 . . . 4 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
21 abelth.3 . . . 4 (𝜑𝑀 ∈ ℝ)
22 abelth.4 . . . 4 (𝜑 → 0 ≤ 𝑀)
2310, 20, 21, 22, 13abelthlem3 25592 . . 3 ((𝜑𝑥𝑆) → seq0( + , (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚)))) ∈ dom ⇝ )
241, 2, 9, 19, 23isumcl 15473 . 2 ((𝜑𝑥𝑆) → Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)) ∈ ℂ)
25 abelth.6 . 2 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
2624, 25fmptd 6988 1 (𝜑𝐹:𝑆⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {crab 3068  wss 3887   class class class wbr 5074  cmpt 5157  dom cdm 5589  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cle 11010  cmin 11205  0cn0 12233  seqcseq 13721  cexp 13782  abscabs 14945  cli 15193  Σcsu 15397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-xadd 12849  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592
This theorem is referenced by:  abelthlem7  25597  abelthlem8  25598  abelthlem9  25599  abelth  25600
  Copyright terms: Public domain W3C validator