MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem4 Structured version   Visualization version   GIF version

Theorem abelthlem4 25877
Description: Lemma for abelth 25884. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
abelth.6 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
Assertion
Ref Expression
abelthlem4 (𝜑𝐹:𝑆⟶ℂ)
Distinct variable groups:   𝑥,𝑛,𝑧,𝑀   𝐴,𝑛,𝑥,𝑧   𝜑,𝑛,𝑥   𝑆,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)   𝐹(𝑥,𝑧,𝑛)

Proof of Theorem abelthlem4
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12848 . . 3 0 = (ℤ‘0)
2 0zd 12554 . . 3 ((𝜑𝑥𝑆) → 0 ∈ ℤ)
3 fveq2 6879 . . . . . 6 (𝑚 = 𝑛 → (𝐴𝑚) = (𝐴𝑛))
4 oveq2 7402 . . . . . 6 (𝑚 = 𝑛 → (𝑥𝑚) = (𝑥𝑛))
53, 4oveq12d 7412 . . . . 5 (𝑚 = 𝑛 → ((𝐴𝑚) · (𝑥𝑚)) = ((𝐴𝑛) · (𝑥𝑛)))
6 eqid 2732 . . . . 5 (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚))) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚)))
7 ovex 7427 . . . . 5 ((𝐴𝑛) · (𝑥𝑛)) ∈ V
85, 6, 7fvmpt 6985 . . . 4 (𝑛 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚)))‘𝑛) = ((𝐴𝑛) · (𝑥𝑛)))
98adantl 482 . . 3 (((𝜑𝑥𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚)))‘𝑛) = ((𝐴𝑛) · (𝑥𝑛)))
10 abelth.1 . . . . . 6 (𝜑𝐴:ℕ0⟶ℂ)
1110adantr 481 . . . . 5 ((𝜑𝑥𝑆) → 𝐴:ℕ0⟶ℂ)
1211ffvelcdmda 7072 . . . 4 (((𝜑𝑥𝑆) ∧ 𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℂ)
13 abelth.5 . . . . . . . 8 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
1413ssrab3 4077 . . . . . . 7 𝑆 ⊆ ℂ
1514a1i 11 . . . . . 6 (𝜑𝑆 ⊆ ℂ)
1615sselda 3979 . . . . 5 ((𝜑𝑥𝑆) → 𝑥 ∈ ℂ)
17 expcl 14029 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝑥𝑛) ∈ ℂ)
1816, 17sylan 580 . . . 4 (((𝜑𝑥𝑆) ∧ 𝑛 ∈ ℕ0) → (𝑥𝑛) ∈ ℂ)
1912, 18mulcld 11218 . . 3 (((𝜑𝑥𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝐴𝑛) · (𝑥𝑛)) ∈ ℂ)
20 abelth.2 . . . 4 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
21 abelth.3 . . . 4 (𝜑𝑀 ∈ ℝ)
22 abelth.4 . . . 4 (𝜑 → 0 ≤ 𝑀)
2310, 20, 21, 22, 13abelthlem3 25876 . . 3 ((𝜑𝑥𝑆) → seq0( + , (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚)))) ∈ dom ⇝ )
241, 2, 9, 19, 23isumcl 15691 . 2 ((𝜑𝑥𝑆) → Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)) ∈ ℂ)
25 abelth.6 . 2 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
2624, 25fmptd 7099 1 (𝜑𝐹:𝑆⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {crab 3432  wss 3945   class class class wbr 5142  cmpt 5225  dom cdm 5670  wf 6529  cfv 6533  (class class class)co 7394  cc 11092  cr 11093  0cc0 11094  1c1 11095   + caddc 11097   · cmul 11099  cle 11233  cmin 11428  0cn0 12456  seqcseq 13950  cexp 14011  abscabs 15165  cli 15412  Σcsu 15616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-inf2 9620  ax-cnex 11150  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171  ax-pre-sup 11172
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-se 5626  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7840  df-1st 7959  df-2nd 7960  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-1o 8450  df-er 8688  df-map 8807  df-pm 8808  df-en 8925  df-dom 8926  df-sdom 8927  df-fin 8928  df-sup 9421  df-inf 9422  df-oi 9489  df-card 9918  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-div 11856  df-nn 12197  df-2 12259  df-3 12260  df-n0 12457  df-z 12543  df-uz 12807  df-rp 12959  df-xadd 13077  df-ico 13314  df-icc 13315  df-fz 13469  df-fzo 13612  df-fl 13741  df-seq 13951  df-exp 14012  df-hash 14275  df-cj 15030  df-re 15031  df-im 15032  df-sqrt 15166  df-abs 15167  df-limsup 15399  df-clim 15416  df-rlim 15417  df-sum 15617  df-psmet 20872  df-xmet 20873  df-met 20874  df-bl 20875
This theorem is referenced by:  abelthlem7  25881  abelthlem8  25882  abelthlem9  25883  abelth  25884
  Copyright terms: Public domain W3C validator