| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abelthlem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for abelth 26381. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| Ref | Expression |
|---|---|
| abelth.1 | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| abelth.2 | ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) |
| abelth.3 | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| abelth.4 | ⊢ (𝜑 → 0 ≤ 𝑀) |
| abelth.5 | ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} |
| abelth.6 | ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) |
| Ref | Expression |
|---|---|
| abelthlem4 | ⊢ (𝜑 → 𝐹:𝑆⟶ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz 12778 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
| 2 | 0zd 12489 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 0 ∈ ℤ) | |
| 3 | fveq2 6830 | . . . . . 6 ⊢ (𝑚 = 𝑛 → (𝐴‘𝑚) = (𝐴‘𝑛)) | |
| 4 | oveq2 7362 | . . . . . 6 ⊢ (𝑚 = 𝑛 → (𝑥↑𝑚) = (𝑥↑𝑛)) | |
| 5 | 3, 4 | oveq12d 7372 | . . . . 5 ⊢ (𝑚 = 𝑛 → ((𝐴‘𝑚) · (𝑥↑𝑚)) = ((𝐴‘𝑛) · (𝑥↑𝑛))) |
| 6 | eqid 2733 | . . . . 5 ⊢ (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚))) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚))) | |
| 7 | ovex 7387 | . . . . 5 ⊢ ((𝐴‘𝑛) · (𝑥↑𝑛)) ∈ V | |
| 8 | 5, 6, 7 | fvmpt 6937 | . . . 4 ⊢ (𝑛 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚)))‘𝑛) = ((𝐴‘𝑛) · (𝑥↑𝑛))) |
| 9 | 8 | adantl 481 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚)))‘𝑛) = ((𝐴‘𝑛) · (𝑥↑𝑛))) |
| 10 | abelth.1 | . . . . . 6 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴:ℕ0⟶ℂ) |
| 12 | 11 | ffvelcdmda 7025 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℕ0) → (𝐴‘𝑛) ∈ ℂ) |
| 13 | abelth.5 | . . . . . . . 8 ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} | |
| 14 | 13 | ssrab3 4031 | . . . . . . 7 ⊢ 𝑆 ⊆ ℂ |
| 15 | 14 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 16 | 15 | sselda 3930 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ ℂ) |
| 17 | expcl 13990 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝑥↑𝑛) ∈ ℂ) | |
| 18 | 16, 17 | sylan 580 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℕ0) → (𝑥↑𝑛) ∈ ℂ) |
| 19 | 12, 18 | mulcld 11141 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝐴‘𝑛) · (𝑥↑𝑛)) ∈ ℂ) |
| 20 | abelth.2 | . . . 4 ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) | |
| 21 | abelth.3 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℝ) | |
| 22 | abelth.4 | . . . 4 ⊢ (𝜑 → 0 ≤ 𝑀) | |
| 23 | 10, 20, 21, 22, 13 | abelthlem3 26373 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → seq0( + , (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚)))) ∈ dom ⇝ ) |
| 24 | 1, 2, 9, 19, 23 | isumcl 15672 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛)) ∈ ℂ) |
| 25 | abelth.6 | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) | |
| 26 | 24, 25 | fmptd 7055 | 1 ⊢ (𝜑 → 𝐹:𝑆⟶ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 ⊆ wss 3898 class class class wbr 5095 ↦ cmpt 5176 dom cdm 5621 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 ℂcc 11013 ℝcr 11014 0cc0 11015 1c1 11016 + caddc 11018 · cmul 11020 ≤ cle 11156 − cmin 11353 ℕ0cn0 12390 seqcseq 13912 ↑cexp 13972 abscabs 15145 ⇝ cli 15395 Σcsu 15597 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-map 8760 df-pm 8761 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-inf 9336 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-z 12478 df-uz 12741 df-rp 12895 df-xadd 13016 df-ico 13255 df-icc 13256 df-fz 13412 df-fzo 13559 df-fl 13700 df-seq 13913 df-exp 13973 df-hash 14242 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-limsup 15382 df-clim 15399 df-rlim 15400 df-sum 15598 df-psmet 21287 df-xmet 21288 df-met 21289 df-bl 21290 |
| This theorem is referenced by: abelthlem7 26378 abelthlem8 26379 abelthlem9 26380 abelth 26381 |
| Copyright terms: Public domain | W3C validator |