Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ef0 | Structured version Visualization version GIF version |
Description: Value of the exponential function at 0. Equation 2 of [Gleason] p. 308. (Contributed by Steve Rodriguez, 27-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
Ref | Expression |
---|---|
ef0 | ⊢ (exp‘0) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 10684 | . . 3 ⊢ 0 ∈ ℂ | |
2 | eqid 2758 | . . . 4 ⊢ (𝑛 ∈ ℕ0 ↦ ((0↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((0↑𝑛) / (!‘𝑛))) | |
3 | 2 | efcvg 15499 | . . 3 ⊢ (0 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((0↑𝑛) / (!‘𝑛)))) ⇝ (exp‘0)) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ seq0( + , (𝑛 ∈ ℕ0 ↦ ((0↑𝑛) / (!‘𝑛)))) ⇝ (exp‘0) |
5 | eqid 2758 | . . 3 ⊢ 0 = 0 | |
6 | 2 | ef0lem 15493 | . . 3 ⊢ (0 = 0 → seq0( + , (𝑛 ∈ ℕ0 ↦ ((0↑𝑛) / (!‘𝑛)))) ⇝ 1) |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ seq0( + , (𝑛 ∈ ℕ0 ↦ ((0↑𝑛) / (!‘𝑛)))) ⇝ 1 |
8 | climuni 14970 | . 2 ⊢ ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((0↑𝑛) / (!‘𝑛)))) ⇝ (exp‘0) ∧ seq0( + , (𝑛 ∈ ℕ0 ↦ ((0↑𝑛) / (!‘𝑛)))) ⇝ 1) → (exp‘0) = 1) | |
9 | 4, 7, 8 | mp2an 691 | 1 ⊢ (exp‘0) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 class class class wbr 5036 ↦ cmpt 5116 ‘cfv 6340 (class class class)co 7156 ℂcc 10586 0cc0 10588 1c1 10589 + caddc 10591 / cdiv 11348 ℕ0cn0 11947 seqcseq 13431 ↑cexp 13492 !cfa 13696 ⇝ cli 14902 expce 15476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-inf2 9150 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 ax-addf 10667 ax-mulf 10668 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-se 5488 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-pm 8425 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-sup 8952 df-inf 8953 df-oi 9020 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-3 11751 df-n0 11948 df-z 12034 df-uz 12296 df-rp 12444 df-ico 12798 df-fz 12953 df-fzo 13096 df-fl 13224 df-seq 13432 df-exp 13493 df-fac 13697 df-hash 13754 df-shft 14487 df-cj 14519 df-re 14520 df-im 14521 df-sqrt 14655 df-abs 14656 df-limsup 14889 df-clim 14906 df-rlim 14907 df-sum 15104 df-ef 15482 |
This theorem is referenced by: efcan 15510 efexp 15515 cos0 15564 absefib 15612 efieq1re 15613 dveflem 24691 reeff1olem 25153 reeff1o 25154 pige3ALT 25224 sineq0 25228 efsubm 25255 logeq0im1 25281 log1 25289 1cxp 25375 abscxpbnd 25454 efrlim 25667 gam1 25762 efnnfsumcl 25800 efvmacl 25817 vmage0 25818 chpge0 25823 efchtdvds 25856 ostth2 26333 xrge0iifcnv 31416 itgexpif 32117 sineq0ALT 42051 |
Copyright terms: Public domain | W3C validator |