![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ef0 | Structured version Visualization version GIF version |
Description: Value of the exponential function at 0. Equation 2 of [Gleason] p. 308. (Contributed by Steve Rodriguez, 27-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
Ref | Expression |
---|---|
ef0 | ⊢ (exp‘0) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 11202 | . . 3 ⊢ 0 ∈ ℂ | |
2 | eqid 2724 | . . . 4 ⊢ (𝑛 ∈ ℕ0 ↦ ((0↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((0↑𝑛) / (!‘𝑛))) | |
3 | 2 | efcvg 16024 | . . 3 ⊢ (0 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((0↑𝑛) / (!‘𝑛)))) ⇝ (exp‘0)) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ seq0( + , (𝑛 ∈ ℕ0 ↦ ((0↑𝑛) / (!‘𝑛)))) ⇝ (exp‘0) |
5 | eqid 2724 | . . 3 ⊢ 0 = 0 | |
6 | 2 | ef0lem 16018 | . . 3 ⊢ (0 = 0 → seq0( + , (𝑛 ∈ ℕ0 ↦ ((0↑𝑛) / (!‘𝑛)))) ⇝ 1) |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ seq0( + , (𝑛 ∈ ℕ0 ↦ ((0↑𝑛) / (!‘𝑛)))) ⇝ 1 |
8 | climuni 15492 | . 2 ⊢ ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((0↑𝑛) / (!‘𝑛)))) ⇝ (exp‘0) ∧ seq0( + , (𝑛 ∈ ℕ0 ↦ ((0↑𝑛) / (!‘𝑛)))) ⇝ 1) → (exp‘0) = 1) | |
9 | 4, 7, 8 | mp2an 689 | 1 ⊢ (exp‘0) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 class class class wbr 5138 ↦ cmpt 5221 ‘cfv 6533 (class class class)co 7401 ℂcc 11103 0cc0 11105 1c1 11106 + caddc 11108 / cdiv 11867 ℕ0cn0 12468 seqcseq 13962 ↑cexp 14023 !cfa 14229 ⇝ cli 15424 expce 16001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9631 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-pre-sup 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-pm 8818 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-sup 9432 df-inf 9433 df-oi 9500 df-card 9929 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-ico 13326 df-fz 13481 df-fzo 13624 df-fl 13753 df-seq 13963 df-exp 14024 df-fac 14230 df-hash 14287 df-shft 15010 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-limsup 15411 df-clim 15428 df-rlim 15429 df-sum 15629 df-ef 16007 |
This theorem is referenced by: efcan 16035 efexp 16040 cos0 16089 absefib 16137 efieq1re 16138 dveflem 25821 reeff1olem 26288 reeff1o 26289 pige3ALT 26359 sineq0 26363 efsubm 26390 logeq0im1 26416 log1 26424 1cxp 26510 abscxpbnd 26592 efrlim 26805 efrlimOLD 26806 gam1 26901 efnnfsumcl 26939 efvmacl 26956 vmage0 26957 chpge0 26962 efchtdvds 26995 ostth2 27474 xrge0iifcnv 33368 itgexpif 34073 sineq0ALT 44153 |
Copyright terms: Public domain | W3C validator |