MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ef0 Structured version   Visualization version   GIF version

Theorem ef0 15026
Description: Value of the exponential function at 0. Equation 2 of [Gleason] p. 308. (Contributed by Steve Rodriguez, 27-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
Assertion
Ref Expression
ef0 (exp‘0) = 1

Proof of Theorem ef0
StepHypRef Expression
1 0cn 10233 . . 3 0 ∈ ℂ
2 eqid 2771 . . . 4 (𝑛 ∈ ℕ0 ↦ ((0↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((0↑𝑛) / (!‘𝑛)))
32efcvg 15020 . . 3 (0 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((0↑𝑛) / (!‘𝑛)))) ⇝ (exp‘0))
41, 3ax-mp 5 . 2 seq0( + , (𝑛 ∈ ℕ0 ↦ ((0↑𝑛) / (!‘𝑛)))) ⇝ (exp‘0)
5 eqid 2771 . . 3 0 = 0
62ef0lem 15014 . . 3 (0 = 0 → seq0( + , (𝑛 ∈ ℕ0 ↦ ((0↑𝑛) / (!‘𝑛)))) ⇝ 1)
75, 6ax-mp 5 . 2 seq0( + , (𝑛 ∈ ℕ0 ↦ ((0↑𝑛) / (!‘𝑛)))) ⇝ 1
8 climuni 14490 . 2 ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((0↑𝑛) / (!‘𝑛)))) ⇝ (exp‘0) ∧ seq0( + , (𝑛 ∈ ℕ0 ↦ ((0↑𝑛) / (!‘𝑛)))) ⇝ 1) → (exp‘0) = 1)
94, 7, 8mp2an 664 1 (exp‘0) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1631  wcel 2145   class class class wbr 4786  cmpt 4863  cfv 6031  (class class class)co 6792  cc 10135  0cc0 10137  1c1 10138   + caddc 10140   / cdiv 10885  0cn0 11493  seqcseq 13007  cexp 13066  !cfa 13263  cli 14422  expce 14997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215  ax-addf 10216  ax-mulf 10217
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-inf 8504  df-oi 8570  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-z 11579  df-uz 11888  df-rp 12035  df-ico 12385  df-fz 12533  df-fzo 12673  df-fl 12800  df-seq 13008  df-exp 13067  df-fac 13264  df-hash 13321  df-shft 14014  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-limsup 14409  df-clim 14426  df-rlim 14427  df-sum 14624  df-ef 15003
This theorem is referenced by:  efcan  15031  efexp  15036  cos0  15085  absefib  15133  efieq1re  15134  dveflem  23961  reeff1olem  24419  reeff1o  24420  pige3  24489  sineq0  24493  efsubm  24517  logeq0im1  24544  log1  24552  1cxp  24638  abscxpbnd  24714  efrlim  24916  gam1  25011  efnnfsumcl  25049  efvmacl  25066  vmage0  25067  chpge0  25072  efchtdvds  25105  ostth2  25546  xrge0iifcnv  30316  itgexpif  31021  sineq0ALT  39691
  Copyright terms: Public domain W3C validator