Step | Hyp | Ref
| Expression |
1 | | f1oi 6903 |
. . . . 5
⊢ ( I
↾ {𝑒 ∈ 𝒫
({0, 1} × (0..^𝑁))
∣ ∃𝑥 ∈
(0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})}–1-1-onto→{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})} |
2 | | f1of1 6864 |
. . . . 5
⊢ (( I
↾ {𝑒 ∈ 𝒫
({0, 1} × (0..^𝑁))
∣ ∃𝑥 ∈
(0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})}–1-1-onto→{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})} → ( I ↾ {𝑒 ∈ 𝒫 ({0, 1}
× (0..^𝑁)) ∣
∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})}–1-1→{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})}) |
3 | 1, 2 | mp1i 13 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → ( I ↾
{𝑒 ∈ 𝒫 ({0, 1}
× (0..^𝑁)) ∣
∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})}–1-1→{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})}) |
4 | | eqid 2740 |
. . . . 5
⊢
(1..^(⌈‘(𝑁 / 2))) = (1..^(⌈‘(𝑁 / 2))) |
5 | | eqid 2740 |
. . . . 5
⊢
(0..^𝑁) = (0..^𝑁) |
6 | 4, 5 | gpgusgralem 47900 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → {𝑒 ∈ 𝒫 ({0, 1}
× (0..^𝑁)) ∣
∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})} ⊆ {𝑝 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ (♯‘𝑝) = 2}) |
7 | | f1ss 6825 |
. . . 4
⊢ ((( I
↾ {𝑒 ∈ 𝒫
({0, 1} × (0..^𝑁))
∣ ∃𝑥 ∈
(0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})}–1-1→{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})} ∧ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})} ⊆ {𝑝 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ (♯‘𝑝) = 2}) → ( I ↾
{𝑒 ∈ 𝒫 ({0, 1}
× (0..^𝑁)) ∣
∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})}–1-1→{𝑝 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ (♯‘𝑝) = 2}) |
8 | 3, 6, 7 | syl2anc 583 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → ( I ↾
{𝑒 ∈ 𝒫 ({0, 1}
× (0..^𝑁)) ∣
∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})}–1-1→{𝑝 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ (♯‘𝑝) = 2}) |
9 | | eluzge3nn 12964 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈ ℕ) |
10 | 4, 5 | gpgiedg 47893 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(1..^(⌈‘(𝑁 /
2)))) → (iEdg‘(𝑁
gPetersenGr 𝐾)) = ( I
↾ {𝑒 ∈ 𝒫
({0, 1} × (0..^𝑁))
∣ ∃𝑥 ∈
(0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})})) |
11 | 9, 10 | sylan 579 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) →
(iEdg‘(𝑁 gPetersenGr
𝐾)) = ( I ↾ {𝑒 ∈ 𝒫 ({0, 1}
× (0..^𝑁)) ∣
∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})})) |
12 | 11 | dmeqd 5931 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → dom
(iEdg‘(𝑁 gPetersenGr
𝐾)) = dom ( I ↾
{𝑒 ∈ 𝒫 ({0, 1}
× (0..^𝑁)) ∣
∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})})) |
13 | | dmresi 6084 |
. . . . 5
⊢ dom ( I
↾ {𝑒 ∈ 𝒫
({0, 1} × (0..^𝑁))
∣ ∃𝑥 ∈
(0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})}) = {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})} |
14 | 12, 13 | eqtrdi 2796 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → dom
(iEdg‘(𝑁 gPetersenGr
𝐾)) = {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})}) |
15 | 4, 5 | gpgvtx 47892 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(1..^(⌈‘(𝑁 /
2)))) → (Vtx‘(𝑁
gPetersenGr 𝐾)) = ({0, 1}
× (0..^𝑁))) |
16 | 9, 15 | sylan 579 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) →
(Vtx‘(𝑁 gPetersenGr
𝐾)) = ({0, 1} ×
(0..^𝑁))) |
17 | 16 | pweqd 4639 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → 𝒫
(Vtx‘(𝑁 gPetersenGr
𝐾)) = 𝒫 ({0, 1}
× (0..^𝑁))) |
18 | 17 | rabeqdv 3459 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → {𝑝 ∈ 𝒫
(Vtx‘(𝑁 gPetersenGr
𝐾)) ∣
(♯‘𝑝) = 2} =
{𝑝 ∈ 𝒫 ({0, 1}
× (0..^𝑁)) ∣
(♯‘𝑝) =
2}) |
19 | 11, 14, 18 | f1eq123d 6857 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) →
((iEdg‘(𝑁 gPetersenGr
𝐾)):dom (iEdg‘(𝑁 gPetersenGr 𝐾))–1-1→{𝑝 ∈ 𝒫 (Vtx‘(𝑁 gPetersenGr 𝐾)) ∣ (♯‘𝑝) = 2} ↔ ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})}–1-1→{𝑝 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ (♯‘𝑝) = 2})) |
20 | 8, 19 | mpbird 257 |
. 2
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) →
(iEdg‘(𝑁 gPetersenGr
𝐾)):dom (iEdg‘(𝑁 gPetersenGr 𝐾))–1-1→{𝑝 ∈ 𝒫 (Vtx‘(𝑁 gPetersenGr 𝐾)) ∣ (♯‘𝑝) = 2}) |
21 | | ovex 7484 |
. . 3
⊢ (𝑁 gPetersenGr 𝐾) ∈ V |
22 | | eqid 2740 |
. . . 4
⊢
(Vtx‘(𝑁
gPetersenGr 𝐾)) =
(Vtx‘(𝑁 gPetersenGr
𝐾)) |
23 | | eqid 2740 |
. . . 4
⊢
(iEdg‘(𝑁
gPetersenGr 𝐾)) =
(iEdg‘(𝑁 gPetersenGr
𝐾)) |
24 | 22, 23 | isusgrs 29211 |
. . 3
⊢ ((𝑁 gPetersenGr 𝐾) ∈ V → ((𝑁 gPetersenGr 𝐾) ∈ USGraph ↔ (iEdg‘(𝑁 gPetersenGr 𝐾)):dom (iEdg‘(𝑁 gPetersenGr 𝐾))–1-1→{𝑝 ∈ 𝒫 (Vtx‘(𝑁 gPetersenGr 𝐾)) ∣ (♯‘𝑝) = 2})) |
25 | 21, 24 | mp1i 13 |
. 2
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → ((𝑁 gPetersenGr 𝐾) ∈ USGraph ↔ (iEdg‘(𝑁 gPetersenGr 𝐾)):dom (iEdg‘(𝑁 gPetersenGr 𝐾))–1-1→{𝑝 ∈ 𝒫 (Vtx‘(𝑁 gPetersenGr 𝐾)) ∣ (♯‘𝑝) = 2})) |
26 | 20, 25 | mpbird 257 |
1
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph) |