Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgusgra Structured version   Visualization version   GIF version

Theorem gpgusgra 47901
Description: The generalized Petersen graph GPG(N,K) is a simple graph. (Contributed by AV, 27-Aug-2025.)
Assertion
Ref Expression
gpgusgra ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph)

Proof of Theorem gpgusgra
Dummy variables 𝑒 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6903 . . . . 5 ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}–1-1-onto→{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}
2 f1of1 6864 . . . . 5 (( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}–1-1-onto→{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})} → ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}–1-1→{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})
31, 2mp1i 13 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}–1-1→{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})
4 eqid 2740 . . . . 5 (1..^(⌈‘(𝑁 / 2))) = (1..^(⌈‘(𝑁 / 2)))
5 eqid 2740 . . . . 5 (0..^𝑁) = (0..^𝑁)
64, 5gpgusgralem 47900 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})} ⊆ {𝑝 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ (♯‘𝑝) = 2})
7 f1ss 6825 . . . 4 ((( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}–1-1→{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})} ∧ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})} ⊆ {𝑝 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ (♯‘𝑝) = 2}) → ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}–1-1→{𝑝 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ (♯‘𝑝) = 2})
83, 6, 7syl2anc 583 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}–1-1→{𝑝 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ (♯‘𝑝) = 2})
9 eluzge3nn 12964 . . . . 5 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
104, 5gpgiedg 47893 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (iEdg‘(𝑁 gPetersenGr 𝐾)) = ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}))
119, 10sylan 579 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (iEdg‘(𝑁 gPetersenGr 𝐾)) = ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}))
1211dmeqd 5931 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → dom (iEdg‘(𝑁 gPetersenGr 𝐾)) = dom ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}))
13 dmresi 6084 . . . . 5 dom ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}) = {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}
1412, 13eqtrdi 2796 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → dom (iEdg‘(𝑁 gPetersenGr 𝐾)) = {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})
154, 5gpgvtx 47892 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × (0..^𝑁)))
169, 15sylan 579 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × (0..^𝑁)))
1716pweqd 4639 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → 𝒫 (Vtx‘(𝑁 gPetersenGr 𝐾)) = 𝒫 ({0, 1} × (0..^𝑁)))
1817rabeqdv 3459 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → {𝑝 ∈ 𝒫 (Vtx‘(𝑁 gPetersenGr 𝐾)) ∣ (♯‘𝑝) = 2} = {𝑝 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ (♯‘𝑝) = 2})
1911, 14, 18f1eq123d 6857 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → ((iEdg‘(𝑁 gPetersenGr 𝐾)):dom (iEdg‘(𝑁 gPetersenGr 𝐾))–1-1→{𝑝 ∈ 𝒫 (Vtx‘(𝑁 gPetersenGr 𝐾)) ∣ (♯‘𝑝) = 2} ↔ ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}–1-1→{𝑝 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ (♯‘𝑝) = 2}))
208, 19mpbird 257 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (iEdg‘(𝑁 gPetersenGr 𝐾)):dom (iEdg‘(𝑁 gPetersenGr 𝐾))–1-1→{𝑝 ∈ 𝒫 (Vtx‘(𝑁 gPetersenGr 𝐾)) ∣ (♯‘𝑝) = 2})
21 ovex 7484 . . 3 (𝑁 gPetersenGr 𝐾) ∈ V
22 eqid 2740 . . . 4 (Vtx‘(𝑁 gPetersenGr 𝐾)) = (Vtx‘(𝑁 gPetersenGr 𝐾))
23 eqid 2740 . . . 4 (iEdg‘(𝑁 gPetersenGr 𝐾)) = (iEdg‘(𝑁 gPetersenGr 𝐾))
2422, 23isusgrs 29211 . . 3 ((𝑁 gPetersenGr 𝐾) ∈ V → ((𝑁 gPetersenGr 𝐾) ∈ USGraph ↔ (iEdg‘(𝑁 gPetersenGr 𝐾)):dom (iEdg‘(𝑁 gPetersenGr 𝐾))–1-1→{𝑝 ∈ 𝒫 (Vtx‘(𝑁 gPetersenGr 𝐾)) ∣ (♯‘𝑝) = 2}))
2521, 24mp1i 13 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → ((𝑁 gPetersenGr 𝐾) ∈ USGraph ↔ (iEdg‘(𝑁 gPetersenGr 𝐾)):dom (iEdg‘(𝑁 gPetersenGr 𝐾))–1-1→{𝑝 ∈ 𝒫 (Vtx‘(𝑁 gPetersenGr 𝐾)) ∣ (♯‘𝑝) = 2}))
2620, 25mpbird 257 1 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1086   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  Vcvv 3488  wss 3976  𝒫 cpw 4622  {cpr 4650  cop 4654   I cid 5593   × cxp 5699  dom cdm 5701  cres 5703  1-1wf1 6573  1-1-ontowf1o 6575  cfv 6576  (class class class)co 7451  0cc0 11187  1c1 11188   + caddc 11190   / cdiv 11952  cn 12298  2c2 12353  3c3 12354  cuz 12910  ..^cfzo 13722  cceil 13858   mod cmo 13936  chash 14396  Vtxcvtx 29051  iEdgciedg 29052  USGraphcusgr 29204   gPetersenGr cgpg 47889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5304  ax-sep 5318  ax-nul 5325  ax-pow 5384  ax-pr 5448  ax-un 7773  ax-cnex 11243  ax-resscn 11244  ax-1cn 11245  ax-icn 11246  ax-addcl 11247  ax-addrcl 11248  ax-mulcl 11249  ax-mulrcl 11250  ax-mulcom 11251  ax-addass 11252  ax-mulass 11253  ax-distr 11254  ax-i2m1 11255  ax-1ne0 11256  ax-1rid 11257  ax-rnegex 11258  ax-rrecex 11259  ax-cnre 11260  ax-pre-lttri 11261  ax-pre-lttrn 11262  ax-pre-ltadd 11263  ax-pre-mulgt0 11264  ax-pre-sup 11265
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4933  df-int 4972  df-iun 5018  df-br 5168  df-opab 5230  df-mpt 5251  df-tr 5285  df-id 5594  df-eprel 5600  df-po 5608  df-so 5609  df-fr 5653  df-we 5655  df-xp 5707  df-rel 5708  df-cnv 5709  df-co 5710  df-dm 5711  df-rn 5712  df-res 5713  df-ima 5714  df-pred 6335  df-ord 6401  df-on 6402  df-lim 6403  df-suc 6404  df-iota 6528  df-fun 6578  df-fn 6579  df-f 6580  df-f1 6581  df-fo 6582  df-f1o 6583  df-fv 6584  df-riota 7407  df-ov 7454  df-oprab 7455  df-mpo 7456  df-om 7907  df-1st 8033  df-2nd 8034  df-frecs 8325  df-wrecs 8356  df-recs 8430  df-rdg 8469  df-1o 8525  df-oadd 8529  df-er 8766  df-en 9007  df-dom 9008  df-sdom 9009  df-fin 9010  df-sup 9514  df-inf 9515  df-dju 9973  df-card 10011  df-pnf 11329  df-mnf 11330  df-xr 11331  df-ltxr 11332  df-le 11333  df-sub 11526  df-neg 11527  df-div 11953  df-nn 12299  df-2 12361  df-3 12362  df-4 12363  df-5 12364  df-6 12365  df-7 12366  df-8 12367  df-9 12368  df-n0 12559  df-xnn0 12632  df-z 12646  df-dec 12766  df-uz 12911  df-rp 13067  df-fz 13579  df-fzo 13723  df-fl 13859  df-ceil 13860  df-mod 13937  df-hash 14397  df-dvds 16320  df-struct 17214  df-slot 17249  df-ndx 17261  df-base 17279  df-edgf 29042  df-vtx 29053  df-iedg 29054  df-usgr 29206  df-gpg 47890
This theorem is referenced by:  gpgvtxedg0  47908  gpgvtxedg1  47909  gpgnbgrvtx0  47917  gpgnbgrvtx1  47918  gpg5nbgrvtx03star  47923  gpg5nbgr3star  47924  gpgvtxdg3  47925
  Copyright terms: Public domain W3C validator