Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgusgra Structured version   Visualization version   GIF version

Theorem gpgusgra 48021
Description: The generalized Petersen graph GPG(N,K) is a simple graph. (Contributed by AV, 27-Aug-2025.)
Assertion
Ref Expression
gpgusgra ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph)

Proof of Theorem gpgusgra
Dummy variables 𝑒 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6820 . . . . 5 ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}–1-1-onto→{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}
2 f1of1 6781 . . . . 5 (( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}–1-1-onto→{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})} → ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}–1-1→{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})
31, 2mp1i 13 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}–1-1→{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})
4 eqid 2729 . . . . 5 (1..^(⌈‘(𝑁 / 2))) = (1..^(⌈‘(𝑁 / 2)))
5 eqid 2729 . . . . 5 (0..^𝑁) = (0..^𝑁)
64, 5gpgusgralem 48020 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})} ⊆ {𝑝 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ (♯‘𝑝) = 2})
7 f1ss 6743 . . . 4 ((( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}–1-1→{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})} ∧ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})} ⊆ {𝑝 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ (♯‘𝑝) = 2}) → ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}–1-1→{𝑝 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ (♯‘𝑝) = 2})
83, 6, 7syl2anc 584 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}–1-1→{𝑝 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ (♯‘𝑝) = 2})
9 eluz3nn 12824 . . . . 5 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
104, 5gpgiedg 48008 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (iEdg‘(𝑁 gPetersenGr 𝐾)) = ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}))
119, 10sylan 580 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (iEdg‘(𝑁 gPetersenGr 𝐾)) = ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}))
1211dmeqd 5859 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → dom (iEdg‘(𝑁 gPetersenGr 𝐾)) = dom ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}))
13 dmresi 6012 . . . . 5 dom ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}) = {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}
1412, 13eqtrdi 2780 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → dom (iEdg‘(𝑁 gPetersenGr 𝐾)) = {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})
154, 5gpgvtx 48007 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × (0..^𝑁)))
169, 15sylan 580 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × (0..^𝑁)))
1716pweqd 4576 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → 𝒫 (Vtx‘(𝑁 gPetersenGr 𝐾)) = 𝒫 ({0, 1} × (0..^𝑁)))
1817rabeqdv 3418 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → {𝑝 ∈ 𝒫 (Vtx‘(𝑁 gPetersenGr 𝐾)) ∣ (♯‘𝑝) = 2} = {𝑝 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ (♯‘𝑝) = 2})
1911, 14, 18f1eq123d 6774 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → ((iEdg‘(𝑁 gPetersenGr 𝐾)):dom (iEdg‘(𝑁 gPetersenGr 𝐾))–1-1→{𝑝 ∈ 𝒫 (Vtx‘(𝑁 gPetersenGr 𝐾)) ∣ (♯‘𝑝) = 2} ↔ ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}–1-1→{𝑝 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ (♯‘𝑝) = 2}))
208, 19mpbird 257 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (iEdg‘(𝑁 gPetersenGr 𝐾)):dom (iEdg‘(𝑁 gPetersenGr 𝐾))–1-1→{𝑝 ∈ 𝒫 (Vtx‘(𝑁 gPetersenGr 𝐾)) ∣ (♯‘𝑝) = 2})
21 ovex 7402 . . 3 (𝑁 gPetersenGr 𝐾) ∈ V
22 eqid 2729 . . . 4 (Vtx‘(𝑁 gPetersenGr 𝐾)) = (Vtx‘(𝑁 gPetersenGr 𝐾))
23 eqid 2729 . . . 4 (iEdg‘(𝑁 gPetersenGr 𝐾)) = (iEdg‘(𝑁 gPetersenGr 𝐾))
2422, 23isusgrs 29059 . . 3 ((𝑁 gPetersenGr 𝐾) ∈ V → ((𝑁 gPetersenGr 𝐾) ∈ USGraph ↔ (iEdg‘(𝑁 gPetersenGr 𝐾)):dom (iEdg‘(𝑁 gPetersenGr 𝐾))–1-1→{𝑝 ∈ 𝒫 (Vtx‘(𝑁 gPetersenGr 𝐾)) ∣ (♯‘𝑝) = 2}))
2521, 24mp1i 13 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → ((𝑁 gPetersenGr 𝐾) ∈ USGraph ↔ (iEdg‘(𝑁 gPetersenGr 𝐾)):dom (iEdg‘(𝑁 gPetersenGr 𝐾))–1-1→{𝑝 ∈ 𝒫 (Vtx‘(𝑁 gPetersenGr 𝐾)) ∣ (♯‘𝑝) = 2}))
2620, 25mpbird 257 1 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  wrex 3053  {crab 3402  Vcvv 3444  wss 3911  𝒫 cpw 4559  {cpr 4587  cop 4591   I cid 5525   × cxp 5629  dom cdm 5631  cres 5633  1-1wf1 6496  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045   + caddc 11047   / cdiv 11811  cn 12162  2c2 12217  3c3 12218  cuz 12769  ..^cfzo 13591  cceil 13729   mod cmo 13807  chash 14271  Vtxcvtx 28899  iEdgciedg 28900  USGraphcusgr 29052   gPetersenGr cgpg 48004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-ceil 13731  df-mod 13808  df-hash 14272  df-dvds 16199  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-edgf 28892  df-vtx 28901  df-iedg 28902  df-usgr 29054  df-gpg 48005
This theorem is referenced by:  gpgprismgrusgra  48022  gpgvtxedg0  48027  gpgvtxedg1  48028  gpgnbgrvtx0  48038  gpgnbgrvtx1  48039  gpg5nbgrvtx03star  48044  gpg5nbgr3star  48045  gpgvtxdg3  48046  gpg3kgrtriex  48053  gpg5gricstgr3  48054  pgjsgr  48056  gpg5grlic  48057  gpg5ngric  48091
  Copyright terms: Public domain W3C validator