Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgusgra Structured version   Visualization version   GIF version

Theorem gpgusgra 47985
Description: The generalized Petersen graph GPG(N,K) is a simple graph. (Contributed by AV, 27-Aug-2025.)
Assertion
Ref Expression
gpgusgra ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph)

Proof of Theorem gpgusgra
Dummy variables 𝑒 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6884 . . . . 5 ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}–1-1-onto→{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}
2 f1of1 6845 . . . . 5 (( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}–1-1-onto→{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})} → ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}–1-1→{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})
31, 2mp1i 13 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}–1-1→{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})
4 eqid 2736 . . . . 5 (1..^(⌈‘(𝑁 / 2))) = (1..^(⌈‘(𝑁 / 2)))
5 eqid 2736 . . . . 5 (0..^𝑁) = (0..^𝑁)
64, 5gpgusgralem 47984 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})} ⊆ {𝑝 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ (♯‘𝑝) = 2})
7 f1ss 6807 . . . 4 ((( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}–1-1→{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})} ∧ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})} ⊆ {𝑝 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ (♯‘𝑝) = 2}) → ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}–1-1→{𝑝 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ (♯‘𝑝) = 2})
83, 6, 7syl2anc 584 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}–1-1→{𝑝 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ (♯‘𝑝) = 2})
9 eluzge3nn 12928 . . . . 5 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
104, 5gpgiedg 47976 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (iEdg‘(𝑁 gPetersenGr 𝐾)) = ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}))
119, 10sylan 580 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (iEdg‘(𝑁 gPetersenGr 𝐾)) = ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}))
1211dmeqd 5914 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → dom (iEdg‘(𝑁 gPetersenGr 𝐾)) = dom ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}))
13 dmresi 6068 . . . . 5 dom ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}) = {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}
1412, 13eqtrdi 2792 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → dom (iEdg‘(𝑁 gPetersenGr 𝐾)) = {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})
154, 5gpgvtx 47975 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × (0..^𝑁)))
169, 15sylan 580 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × (0..^𝑁)))
1716pweqd 4615 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → 𝒫 (Vtx‘(𝑁 gPetersenGr 𝐾)) = 𝒫 ({0, 1} × (0..^𝑁)))
1817rabeqdv 3451 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → {𝑝 ∈ 𝒫 (Vtx‘(𝑁 gPetersenGr 𝐾)) ∣ (♯‘𝑝) = 2} = {𝑝 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ (♯‘𝑝) = 2})
1911, 14, 18f1eq123d 6838 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → ((iEdg‘(𝑁 gPetersenGr 𝐾)):dom (iEdg‘(𝑁 gPetersenGr 𝐾))–1-1→{𝑝 ∈ 𝒫 (Vtx‘(𝑁 gPetersenGr 𝐾)) ∣ (♯‘𝑝) = 2} ↔ ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}):{𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}–1-1→{𝑝 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ (♯‘𝑝) = 2}))
208, 19mpbird 257 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (iEdg‘(𝑁 gPetersenGr 𝐾)):dom (iEdg‘(𝑁 gPetersenGr 𝐾))–1-1→{𝑝 ∈ 𝒫 (Vtx‘(𝑁 gPetersenGr 𝐾)) ∣ (♯‘𝑝) = 2})
21 ovex 7462 . . 3 (𝑁 gPetersenGr 𝐾) ∈ V
22 eqid 2736 . . . 4 (Vtx‘(𝑁 gPetersenGr 𝐾)) = (Vtx‘(𝑁 gPetersenGr 𝐾))
23 eqid 2736 . . . 4 (iEdg‘(𝑁 gPetersenGr 𝐾)) = (iEdg‘(𝑁 gPetersenGr 𝐾))
2422, 23isusgrs 29163 . . 3 ((𝑁 gPetersenGr 𝐾) ∈ V → ((𝑁 gPetersenGr 𝐾) ∈ USGraph ↔ (iEdg‘(𝑁 gPetersenGr 𝐾)):dom (iEdg‘(𝑁 gPetersenGr 𝐾))–1-1→{𝑝 ∈ 𝒫 (Vtx‘(𝑁 gPetersenGr 𝐾)) ∣ (♯‘𝑝) = 2}))
2521, 24mp1i 13 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → ((𝑁 gPetersenGr 𝐾) ∈ USGraph ↔ (iEdg‘(𝑁 gPetersenGr 𝐾)):dom (iEdg‘(𝑁 gPetersenGr 𝐾))–1-1→{𝑝 ∈ 𝒫 (Vtx‘(𝑁 gPetersenGr 𝐾)) ∣ (♯‘𝑝) = 2}))
2620, 25mpbird 257 1 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1086   = wceq 1540  wcel 2108  wrex 3069  {crab 3435  Vcvv 3479  wss 3950  𝒫 cpw 4598  {cpr 4626  cop 4630   I cid 5575   × cxp 5681  dom cdm 5683  cres 5685  1-1wf1 6556  1-1-ontowf1o 6558  cfv 6559  (class class class)co 7429  0cc0 11151  1c1 11152   + caddc 11154   / cdiv 11916  cn 12262  2c2 12317  3c3 12318  cuz 12874  ..^cfzo 13690  cceil 13827   mod cmo 13905  chash 14365  Vtxcvtx 29003  iEdgciedg 29004  USGraphcusgr 29156   gPetersenGr cgpg 47972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751  ax-cnex 11207  ax-resscn 11208  ax-1cn 11209  ax-icn 11210  ax-addcl 11211  ax-addrcl 11212  ax-mulcl 11213  ax-mulrcl 11214  ax-mulcom 11215  ax-addass 11216  ax-mulass 11217  ax-distr 11218  ax-i2m1 11219  ax-1ne0 11220  ax-1rid 11221  ax-rnegex 11222  ax-rrecex 11223  ax-cnre 11224  ax-pre-lttri 11225  ax-pre-lttrn 11226  ax-pre-ltadd 11227  ax-pre-mulgt0 11228  ax-pre-sup 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-int 4945  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-tr 5258  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6319  df-ord 6385  df-on 6386  df-lim 6387  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-riota 7386  df-ov 7432  df-oprab 7433  df-mpo 7434  df-om 7884  df-1st 8010  df-2nd 8011  df-frecs 8302  df-wrecs 8333  df-recs 8407  df-rdg 8446  df-1o 8502  df-oadd 8506  df-er 8741  df-en 8982  df-dom 8983  df-sdom 8984  df-fin 8985  df-sup 9478  df-inf 9479  df-dju 9937  df-card 9975  df-pnf 11293  df-mnf 11294  df-xr 11295  df-ltxr 11296  df-le 11297  df-sub 11490  df-neg 11491  df-div 11917  df-nn 12263  df-2 12325  df-3 12326  df-4 12327  df-5 12328  df-6 12329  df-7 12330  df-8 12331  df-9 12332  df-n0 12523  df-xnn0 12596  df-z 12610  df-dec 12730  df-uz 12875  df-rp 13031  df-fz 13544  df-fzo 13691  df-fl 13828  df-ceil 13829  df-mod 13906  df-hash 14366  df-dvds 16287  df-struct 17180  df-slot 17215  df-ndx 17227  df-base 17244  df-edgf 28994  df-vtx 29005  df-iedg 29006  df-usgr 29158  df-gpg 47973
This theorem is referenced by:  gpgvtxedg0  47994  gpgvtxedg1  47995  gpgnbgrvtx0  48003  gpgnbgrvtx1  48004  gpg5nbgrvtx03star  48009  gpg5nbgr3star  48010  gpgvtxdg3  48011  gpg3kgrtriex  48018  gpg5gricstgr3  48019  gpg5grlic  48020
  Copyright terms: Public domain W3C validator