Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgprismgr4cycllem9 Structured version   Visualization version   GIF version

Theorem gpgprismgr4cycllem9 48202
Description: Lemma 9 for gpgprismgr4cycl0 48205. (Contributed by AV, 3-Nov-2025.)
Hypotheses
Ref Expression
gpgprismgr4cycl.p 𝑃 = ⟨“⟨0, 0⟩⟨0, 1⟩⟨1, 1⟩⟨1, 0⟩⟨0, 0⟩”⟩
gpgprismgr4cycl.f 𝐹 = ⟨“{⟨0, 0⟩, ⟨0, 1⟩} {⟨0, 1⟩, ⟨1, 1⟩} {⟨1, 1⟩, ⟨1, 0⟩} {⟨1, 0⟩, ⟨0, 0⟩}”⟩
gpgprismgr4cycl.g 𝐺 = (𝑁 gPetersenGr 1)
Assertion
Ref Expression
gpgprismgr4cycllem9 (𝑁 ∈ (ℤ‘3) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))

Proof of Theorem gpgprismgr4cycllem9
StepHypRef Expression
1 gpgprismgr4cycl.p . . . 4 𝑃 = ⟨“⟨0, 0⟩⟨0, 1⟩⟨1, 1⟩⟨1, 0⟩⟨0, 0⟩”⟩
2 eluz3nn 12787 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
3 lbfzo0 13599 . . . . . . 7 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
42, 3sylibr 234 . . . . . 6 (𝑁 ∈ (ℤ‘3) → 0 ∈ (0..^𝑁))
5 1nn0 12397 . . . . . . . 8 1 ∈ ℕ0
65a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 1 ∈ ℕ0)
7 eluzelz 12742 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
8 uzuzle23 12782 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
9 eluz2gt1 12818 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
108, 9syl 17 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 1 < 𝑁)
11 elfzo0z 13601 . . . . . . 7 (1 ∈ (0..^𝑁) ↔ (1 ∈ ℕ0𝑁 ∈ ℤ ∧ 1 < 𝑁))
126, 7, 10, 11syl3anbrc 1344 . . . . . 6 (𝑁 ∈ (ℤ‘3) → 1 ∈ (0..^𝑁))
13 c0ex 11106 . . . . . . . . . 10 0 ∈ V
1413prid1 4712 . . . . . . . . 9 0 ∈ {0, 1}
1514a1i 11 . . . . . . . 8 ((0 ∈ (0..^𝑁) ∧ 1 ∈ (0..^𝑁)) → 0 ∈ {0, 1})
16 simpl 482 . . . . . . . 8 ((0 ∈ (0..^𝑁) ∧ 1 ∈ (0..^𝑁)) → 0 ∈ (0..^𝑁))
1715, 16opelxpd 5653 . . . . . . 7 ((0 ∈ (0..^𝑁) ∧ 1 ∈ (0..^𝑁)) → ⟨0, 0⟩ ∈ ({0, 1} × (0..^𝑁)))
18 simpr 484 . . . . . . . 8 ((0 ∈ (0..^𝑁) ∧ 1 ∈ (0..^𝑁)) → 1 ∈ (0..^𝑁))
1915, 18opelxpd 5653 . . . . . . 7 ((0 ∈ (0..^𝑁) ∧ 1 ∈ (0..^𝑁)) → ⟨0, 1⟩ ∈ ({0, 1} × (0..^𝑁)))
20 1ex 11108 . . . . . . . . . 10 1 ∈ V
2120prid2 4713 . . . . . . . . 9 1 ∈ {0, 1}
2221a1i 11 . . . . . . . 8 ((0 ∈ (0..^𝑁) ∧ 1 ∈ (0..^𝑁)) → 1 ∈ {0, 1})
2322, 18opelxpd 5653 . . . . . . 7 ((0 ∈ (0..^𝑁) ∧ 1 ∈ (0..^𝑁)) → ⟨1, 1⟩ ∈ ({0, 1} × (0..^𝑁)))
2422, 16opelxpd 5653 . . . . . . 7 ((0 ∈ (0..^𝑁) ∧ 1 ∈ (0..^𝑁)) → ⟨1, 0⟩ ∈ ({0, 1} × (0..^𝑁)))
2517, 19, 23, 24, 17s5cld 14781 . . . . . 6 ((0 ∈ (0..^𝑁) ∧ 1 ∈ (0..^𝑁)) → ⟨“⟨0, 0⟩⟨0, 1⟩⟨1, 1⟩⟨1, 0⟩⟨0, 0⟩”⟩ ∈ Word ({0, 1} × (0..^𝑁)))
264, 12, 25syl2anc 584 . . . . 5 (𝑁 ∈ (ℤ‘3) → ⟨“⟨0, 0⟩⟨0, 1⟩⟨1, 1⟩⟨1, 0⟩⟨0, 0⟩”⟩ ∈ Word ({0, 1} × (0..^𝑁)))
27 gpgprismgr4cycl.g . . . . . . . 8 𝐺 = (𝑁 gPetersenGr 1)
2827fveq2i 6825 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘(𝑁 gPetersenGr 1))
29 1elfzo1ceilhalf1 47436 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 1 ∈ (1..^(⌈‘(𝑁 / 2))))
30 eqid 2731 . . . . . . . . 9 (1..^(⌈‘(𝑁 / 2))) = (1..^(⌈‘(𝑁 / 2)))
31 eqid 2731 . . . . . . . . 9 (0..^𝑁) = (0..^𝑁)
3230, 31gpgvtx 48142 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 1 ∈ (1..^(⌈‘(𝑁 / 2)))) → (Vtx‘(𝑁 gPetersenGr 1)) = ({0, 1} × (0..^𝑁)))
332, 29, 32syl2anc 584 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → (Vtx‘(𝑁 gPetersenGr 1)) = ({0, 1} × (0..^𝑁)))
3428, 33eqtrid 2778 . . . . . 6 (𝑁 ∈ (ℤ‘3) → (Vtx‘𝐺) = ({0, 1} × (0..^𝑁)))
35 wrdeq 14443 . . . . . 6 ((Vtx‘𝐺) = ({0, 1} × (0..^𝑁)) → Word (Vtx‘𝐺) = Word ({0, 1} × (0..^𝑁)))
3634, 35syl 17 . . . . 5 (𝑁 ∈ (ℤ‘3) → Word (Vtx‘𝐺) = Word ({0, 1} × (0..^𝑁)))
3726, 36eleqtrrd 2834 . . . 4 (𝑁 ∈ (ℤ‘3) → ⟨“⟨0, 0⟩⟨0, 1⟩⟨1, 1⟩⟨1, 0⟩⟨0, 0⟩”⟩ ∈ Word (Vtx‘𝐺))
381, 37eqeltrid 2835 . . 3 (𝑁 ∈ (ℤ‘3) → 𝑃 ∈ Word (Vtx‘𝐺))
39 wrdf 14425 . . 3 (𝑃 ∈ Word (Vtx‘𝐺) → 𝑃:(0..^(♯‘𝑃))⟶(Vtx‘𝐺))
4038, 39syl 17 . 2 (𝑁 ∈ (ℤ‘3) → 𝑃:(0..^(♯‘𝑃))⟶(Vtx‘𝐺))
41 4z 12506 . . . . . 6 4 ∈ ℤ
42 fzval3 13634 . . . . . 6 (4 ∈ ℤ → (0...4) = (0..^(4 + 1)))
4341, 42ax-mp 5 . . . . 5 (0...4) = (0..^(4 + 1))
44 gpgprismgr4cycl.f . . . . . . 7 𝐹 = ⟨“{⟨0, 0⟩, ⟨0, 1⟩} {⟨0, 1⟩, ⟨1, 1⟩} {⟨1, 1⟩, ⟨1, 0⟩} {⟨1, 0⟩, ⟨0, 0⟩}”⟩
4544gpgprismgr4cycllem1 48194 . . . . . 6 (♯‘𝐹) = 4
4645oveq2i 7357 . . . . 5 (0...(♯‘𝐹)) = (0...4)
471gpgprismgr4cycllem4 48197 . . . . . . 7 (♯‘𝑃) = 5
48 df-5 12191 . . . . . . 7 5 = (4 + 1)
4947, 48eqtri 2754 . . . . . 6 (♯‘𝑃) = (4 + 1)
5049oveq2i 7357 . . . . 5 (0..^(♯‘𝑃)) = (0..^(4 + 1))
5143, 46, 503eqtr4i 2764 . . . 4 (0...(♯‘𝐹)) = (0..^(♯‘𝑃))
5251a1i 11 . . 3 (𝑁 ∈ (ℤ‘3) → (0...(♯‘𝐹)) = (0..^(♯‘𝑃)))
5352feq2d 6635 . 2 (𝑁 ∈ (ℤ‘3) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ↔ 𝑃:(0..^(♯‘𝑃))⟶(Vtx‘𝐺)))
5440, 53mpbird 257 1 (𝑁 ∈ (ℤ‘3) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cpr 4575  cop 4579   class class class wbr 5089   × cxp 5612  wf 6477  cfv 6481  (class class class)co 7346  0cc0 11006  1c1 11007   + caddc 11009   < clt 11146   / cdiv 11774  cn 12125  2c2 12180  3c3 12181  4c4 12182  5c5 12183  0cn0 12381  cz 12468  cuz 12732  ...cfz 13407  ..^cfzo 13554  cceil 13695  chash 14237  Word cword 14420  ⟨“cs4 14750  ⟨“cs5 14751  Vtxcvtx 28974   gPetersenGr cgpg 48139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-ico 13251  df-fz 13408  df-fzo 13555  df-fl 13696  df-ceil 13697  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14504  df-s2 14755  df-s3 14756  df-s4 14757  df-s5 14758  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-edgf 28967  df-vtx 28976  df-gpg 48140
This theorem is referenced by:  gpgprismgr4cycllem11  48204
  Copyright terms: Public domain W3C validator