Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgprismgr4cycllem9 Structured version   Visualization version   GIF version

Theorem gpgprismgr4cycllem9 48050
Description: Lemma 9 for gpgprismgr4cycl0 48053. (Contributed by AV, 3-Nov-2025.)
Hypotheses
Ref Expression
gpgprismgr4cycl.p 𝑃 = ⟨“⟨0, 0⟩⟨0, 1⟩⟨1, 1⟩⟨1, 0⟩⟨0, 0⟩”⟩
gpgprismgr4cycl.f 𝐹 = ⟨“{⟨0, 0⟩, ⟨0, 1⟩} {⟨0, 1⟩, ⟨1, 1⟩} {⟨1, 1⟩, ⟨1, 0⟩} {⟨1, 0⟩, ⟨0, 0⟩}”⟩
gpgprismgr4cycl.g 𝐺 = (𝑁 gPetersenGr 1)
Assertion
Ref Expression
gpgprismgr4cycllem9 (𝑁 ∈ (ℤ‘3) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))

Proof of Theorem gpgprismgr4cycllem9
StepHypRef Expression
1 gpgprismgr4cycl.p . . . 4 𝑃 = ⟨“⟨0, 0⟩⟨0, 1⟩⟨1, 1⟩⟨1, 0⟩⟨0, 0⟩”⟩
2 eluzge3nn 12904 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
3 lbfzo0 13714 . . . . . . 7 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
42, 3sylibr 234 . . . . . 6 (𝑁 ∈ (ℤ‘3) → 0 ∈ (0..^𝑁))
5 1nn0 12515 . . . . . . . 8 1 ∈ ℕ0
65a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 1 ∈ ℕ0)
7 eluzelz 12860 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
8 uzuzle23 12903 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
9 eluz2gt1 12934 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
108, 9syl 17 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 1 < 𝑁)
11 elfzo0z 13716 . . . . . . 7 (1 ∈ (0..^𝑁) ↔ (1 ∈ ℕ0𝑁 ∈ ℤ ∧ 1 < 𝑁))
126, 7, 10, 11syl3anbrc 1344 . . . . . 6 (𝑁 ∈ (ℤ‘3) → 1 ∈ (0..^𝑁))
13 c0ex 11227 . . . . . . . . . 10 0 ∈ V
1413prid1 4738 . . . . . . . . 9 0 ∈ {0, 1}
1514a1i 11 . . . . . . . 8 ((0 ∈ (0..^𝑁) ∧ 1 ∈ (0..^𝑁)) → 0 ∈ {0, 1})
16 simpl 482 . . . . . . . 8 ((0 ∈ (0..^𝑁) ∧ 1 ∈ (0..^𝑁)) → 0 ∈ (0..^𝑁))
1715, 16opelxpd 5693 . . . . . . 7 ((0 ∈ (0..^𝑁) ∧ 1 ∈ (0..^𝑁)) → ⟨0, 0⟩ ∈ ({0, 1} × (0..^𝑁)))
18 simpr 484 . . . . . . . 8 ((0 ∈ (0..^𝑁) ∧ 1 ∈ (0..^𝑁)) → 1 ∈ (0..^𝑁))
1915, 18opelxpd 5693 . . . . . . 7 ((0 ∈ (0..^𝑁) ∧ 1 ∈ (0..^𝑁)) → ⟨0, 1⟩ ∈ ({0, 1} × (0..^𝑁)))
20 1ex 11229 . . . . . . . . . 10 1 ∈ V
2120prid2 4739 . . . . . . . . 9 1 ∈ {0, 1}
2221a1i 11 . . . . . . . 8 ((0 ∈ (0..^𝑁) ∧ 1 ∈ (0..^𝑁)) → 1 ∈ {0, 1})
2322, 18opelxpd 5693 . . . . . . 7 ((0 ∈ (0..^𝑁) ∧ 1 ∈ (0..^𝑁)) → ⟨1, 1⟩ ∈ ({0, 1} × (0..^𝑁)))
2422, 16opelxpd 5693 . . . . . . 7 ((0 ∈ (0..^𝑁) ∧ 1 ∈ (0..^𝑁)) → ⟨1, 0⟩ ∈ ({0, 1} × (0..^𝑁)))
2517, 19, 23, 24, 17s5cld 14891 . . . . . 6 ((0 ∈ (0..^𝑁) ∧ 1 ∈ (0..^𝑁)) → ⟨“⟨0, 0⟩⟨0, 1⟩⟨1, 1⟩⟨1, 0⟩⟨0, 0⟩”⟩ ∈ Word ({0, 1} × (0..^𝑁)))
264, 12, 25syl2anc 584 . . . . 5 (𝑁 ∈ (ℤ‘3) → ⟨“⟨0, 0⟩⟨0, 1⟩⟨1, 1⟩⟨1, 0⟩⟨0, 0⟩”⟩ ∈ Word ({0, 1} × (0..^𝑁)))
27 gpgprismgr4cycl.g . . . . . . . 8 𝐺 = (𝑁 gPetersenGr 1)
2827fveq2i 6878 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘(𝑁 gPetersenGr 1))
29 1elfzo1ceilhalf1 47314 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 1 ∈ (1..^(⌈‘(𝑁 / 2))))
30 eqid 2735 . . . . . . . . 9 (1..^(⌈‘(𝑁 / 2))) = (1..^(⌈‘(𝑁 / 2)))
31 eqid 2735 . . . . . . . . 9 (0..^𝑁) = (0..^𝑁)
3230, 31gpgvtx 47995 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 1 ∈ (1..^(⌈‘(𝑁 / 2)))) → (Vtx‘(𝑁 gPetersenGr 1)) = ({0, 1} × (0..^𝑁)))
332, 29, 32syl2anc 584 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → (Vtx‘(𝑁 gPetersenGr 1)) = ({0, 1} × (0..^𝑁)))
3428, 33eqtrid 2782 . . . . . 6 (𝑁 ∈ (ℤ‘3) → (Vtx‘𝐺) = ({0, 1} × (0..^𝑁)))
35 wrdeq 14552 . . . . . 6 ((Vtx‘𝐺) = ({0, 1} × (0..^𝑁)) → Word (Vtx‘𝐺) = Word ({0, 1} × (0..^𝑁)))
3634, 35syl 17 . . . . 5 (𝑁 ∈ (ℤ‘3) → Word (Vtx‘𝐺) = Word ({0, 1} × (0..^𝑁)))
3726, 36eleqtrrd 2837 . . . 4 (𝑁 ∈ (ℤ‘3) → ⟨“⟨0, 0⟩⟨0, 1⟩⟨1, 1⟩⟨1, 0⟩⟨0, 0⟩”⟩ ∈ Word (Vtx‘𝐺))
381, 37eqeltrid 2838 . . 3 (𝑁 ∈ (ℤ‘3) → 𝑃 ∈ Word (Vtx‘𝐺))
39 wrdf 14534 . . 3 (𝑃 ∈ Word (Vtx‘𝐺) → 𝑃:(0..^(♯‘𝑃))⟶(Vtx‘𝐺))
4038, 39syl 17 . 2 (𝑁 ∈ (ℤ‘3) → 𝑃:(0..^(♯‘𝑃))⟶(Vtx‘𝐺))
41 4z 12624 . . . . . 6 4 ∈ ℤ
42 fzval3 13748 . . . . . 6 (4 ∈ ℤ → (0...4) = (0..^(4 + 1)))
4341, 42ax-mp 5 . . . . 5 (0...4) = (0..^(4 + 1))
44 gpgprismgr4cycl.f . . . . . . 7 𝐹 = ⟨“{⟨0, 0⟩, ⟨0, 1⟩} {⟨0, 1⟩, ⟨1, 1⟩} {⟨1, 1⟩, ⟨1, 0⟩} {⟨1, 0⟩, ⟨0, 0⟩}”⟩
4544gpgprismgr4cycllem1 48042 . . . . . 6 (♯‘𝐹) = 4
4645oveq2i 7414 . . . . 5 (0...(♯‘𝐹)) = (0...4)
471gpgprismgr4cycllem4 48045 . . . . . . 7 (♯‘𝑃) = 5
48 df-5 12304 . . . . . . 7 5 = (4 + 1)
4947, 48eqtri 2758 . . . . . 6 (♯‘𝑃) = (4 + 1)
5049oveq2i 7414 . . . . 5 (0..^(♯‘𝑃)) = (0..^(4 + 1))
5143, 46, 503eqtr4i 2768 . . . 4 (0...(♯‘𝐹)) = (0..^(♯‘𝑃))
5251a1i 11 . . 3 (𝑁 ∈ (ℤ‘3) → (0...(♯‘𝐹)) = (0..^(♯‘𝑃)))
5352feq2d 6691 . 2 (𝑁 ∈ (ℤ‘3) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ↔ 𝑃:(0..^(♯‘𝑃))⟶(Vtx‘𝐺)))
5440, 53mpbird 257 1 (𝑁 ∈ (ℤ‘3) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {cpr 4603  cop 4607   class class class wbr 5119   × cxp 5652  wf 6526  cfv 6530  (class class class)co 7403  0cc0 11127  1c1 11128   + caddc 11130   < clt 11267   / cdiv 11892  cn 12238  2c2 12293  3c3 12294  4c4 12295  5c5 12296  0cn0 12499  cz 12586  cuz 12850  ...cfz 13522  ..^cfzo 13669  cceil 13806  chash 14346  Word cword 14529  ⟨“cs4 14860  ⟨“cs5 14861  Vtxcvtx 28921   gPetersenGr cgpg 47992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-oadd 8482  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-inf 9453  df-dju 9913  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-xnn0 12573  df-z 12587  df-dec 12707  df-uz 12851  df-rp 13007  df-ico 13366  df-fz 13523  df-fzo 13670  df-fl 13807  df-ceil 13808  df-hash 14347  df-word 14530  df-concat 14587  df-s1 14612  df-s2 14865  df-s3 14866  df-s4 14867  df-s5 14868  df-struct 17164  df-slot 17199  df-ndx 17211  df-base 17227  df-edgf 28914  df-vtx 28923  df-gpg 47993
This theorem is referenced by:  gpgprismgr4cycllem11  48052
  Copyright terms: Public domain W3C validator