Proof of Theorem gpgprismgr4cycllem9
| Step | Hyp | Ref
| Expression |
| 1 | | gpgprismgr4cycl.p |
. . . 4
⊢ 𝑃 = 〈“〈0,
0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0,
0〉”〉 |
| 2 | | eluzge3nn 12904 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈ ℕ) |
| 3 | | lbfzo0 13714 |
. . . . . . 7
⊢ (0 ∈
(0..^𝑁) ↔ 𝑁 ∈
ℕ) |
| 4 | 2, 3 | sylibr 234 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘3) → 0 ∈ (0..^𝑁)) |
| 5 | | 1nn0 12515 |
. . . . . . . 8
⊢ 1 ∈
ℕ0 |
| 6 | 5 | a1i 11 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘3) → 1 ∈
ℕ0) |
| 7 | | eluzelz 12860 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈ ℤ) |
| 8 | | uzuzle23 12903 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈
(ℤ≥‘2)) |
| 9 | | eluz2gt1 12934 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘2) → 1 < 𝑁) |
| 10 | 8, 9 | syl 17 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘3) → 1 < 𝑁) |
| 11 | | elfzo0z 13716 |
. . . . . . 7
⊢ (1 ∈
(0..^𝑁) ↔ (1 ∈
ℕ0 ∧ 𝑁
∈ ℤ ∧ 1 < 𝑁)) |
| 12 | 6, 7, 10, 11 | syl3anbrc 1344 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘3) → 1 ∈ (0..^𝑁)) |
| 13 | | c0ex 11227 |
. . . . . . . . . 10
⊢ 0 ∈
V |
| 14 | 13 | prid1 4738 |
. . . . . . . . 9
⊢ 0 ∈
{0, 1} |
| 15 | 14 | a1i 11 |
. . . . . . . 8
⊢ ((0
∈ (0..^𝑁) ∧ 1
∈ (0..^𝑁)) → 0
∈ {0, 1}) |
| 16 | | simpl 482 |
. . . . . . . 8
⊢ ((0
∈ (0..^𝑁) ∧ 1
∈ (0..^𝑁)) → 0
∈ (0..^𝑁)) |
| 17 | 15, 16 | opelxpd 5693 |
. . . . . . 7
⊢ ((0
∈ (0..^𝑁) ∧ 1
∈ (0..^𝑁)) →
〈0, 0〉 ∈ ({0, 1} × (0..^𝑁))) |
| 18 | | simpr 484 |
. . . . . . . 8
⊢ ((0
∈ (0..^𝑁) ∧ 1
∈ (0..^𝑁)) → 1
∈ (0..^𝑁)) |
| 19 | 15, 18 | opelxpd 5693 |
. . . . . . 7
⊢ ((0
∈ (0..^𝑁) ∧ 1
∈ (0..^𝑁)) →
〈0, 1〉 ∈ ({0, 1} × (0..^𝑁))) |
| 20 | | 1ex 11229 |
. . . . . . . . . 10
⊢ 1 ∈
V |
| 21 | 20 | prid2 4739 |
. . . . . . . . 9
⊢ 1 ∈
{0, 1} |
| 22 | 21 | a1i 11 |
. . . . . . . 8
⊢ ((0
∈ (0..^𝑁) ∧ 1
∈ (0..^𝑁)) → 1
∈ {0, 1}) |
| 23 | 22, 18 | opelxpd 5693 |
. . . . . . 7
⊢ ((0
∈ (0..^𝑁) ∧ 1
∈ (0..^𝑁)) →
〈1, 1〉 ∈ ({0, 1} × (0..^𝑁))) |
| 24 | 22, 16 | opelxpd 5693 |
. . . . . . 7
⊢ ((0
∈ (0..^𝑁) ∧ 1
∈ (0..^𝑁)) →
〈1, 0〉 ∈ ({0, 1} × (0..^𝑁))) |
| 25 | 17, 19, 23, 24, 17 | s5cld 14891 |
. . . . . 6
⊢ ((0
∈ (0..^𝑁) ∧ 1
∈ (0..^𝑁)) →
〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1,
0〉〈0, 0〉”〉 ∈ Word ({0, 1} × (0..^𝑁))) |
| 26 | 4, 12, 25 | syl2anc 584 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘3) → 〈“〈0, 0〉〈0,
1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 ∈
Word ({0, 1} × (0..^𝑁))) |
| 27 | | gpgprismgr4cycl.g |
. . . . . . . 8
⊢ 𝐺 = (𝑁 gPetersenGr 1) |
| 28 | 27 | fveq2i 6878 |
. . . . . . 7
⊢
(Vtx‘𝐺) =
(Vtx‘(𝑁 gPetersenGr
1)) |
| 29 | | 1elfzo1ceilhalf1 47314 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘3) → 1 ∈ (1..^(⌈‘(𝑁 / 2)))) |
| 30 | | eqid 2735 |
. . . . . . . . 9
⊢
(1..^(⌈‘(𝑁 / 2))) = (1..^(⌈‘(𝑁 / 2))) |
| 31 | | eqid 2735 |
. . . . . . . . 9
⊢
(0..^𝑁) = (0..^𝑁) |
| 32 | 30, 31 | gpgvtx 47995 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 1 ∈
(1..^(⌈‘(𝑁 /
2)))) → (Vtx‘(𝑁
gPetersenGr 1)) = ({0, 1} × (0..^𝑁))) |
| 33 | 2, 29, 32 | syl2anc 584 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘3) → (Vtx‘(𝑁 gPetersenGr 1)) = ({0, 1} ×
(0..^𝑁))) |
| 34 | 28, 33 | eqtrid 2782 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘3) → (Vtx‘𝐺) = ({0, 1} × (0..^𝑁))) |
| 35 | | wrdeq 14552 |
. . . . . 6
⊢
((Vtx‘𝐺) =
({0, 1} × (0..^𝑁))
→ Word (Vtx‘𝐺) =
Word ({0, 1} × (0..^𝑁))) |
| 36 | 34, 35 | syl 17 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘3) → Word (Vtx‘𝐺) = Word ({0, 1} × (0..^𝑁))) |
| 37 | 26, 36 | eleqtrrd 2837 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘3) → 〈“〈0, 0〉〈0,
1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 ∈
Word (Vtx‘𝐺)) |
| 38 | 1, 37 | eqeltrid 2838 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑃 ∈ Word (Vtx‘𝐺)) |
| 39 | | wrdf 14534 |
. . 3
⊢ (𝑃 ∈ Word (Vtx‘𝐺) → 𝑃:(0..^(♯‘𝑃))⟶(Vtx‘𝐺)) |
| 40 | 38, 39 | syl 17 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑃:(0..^(♯‘𝑃))⟶(Vtx‘𝐺)) |
| 41 | | 4z 12624 |
. . . . . 6
⊢ 4 ∈
ℤ |
| 42 | | fzval3 13748 |
. . . . . 6
⊢ (4 ∈
ℤ → (0...4) = (0..^(4 + 1))) |
| 43 | 41, 42 | ax-mp 5 |
. . . . 5
⊢ (0...4) =
(0..^(4 + 1)) |
| 44 | | gpgprismgr4cycl.f |
. . . . . . 7
⊢ 𝐹 = 〈“{〈0,
0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1,
1〉, 〈1, 0〉} {〈1, 0〉, 〈0,
0〉}”〉 |
| 45 | 44 | gpgprismgr4cycllem1 48042 |
. . . . . 6
⊢
(♯‘𝐹) =
4 |
| 46 | 45 | oveq2i 7414 |
. . . . 5
⊢
(0...(♯‘𝐹)) = (0...4) |
| 47 | 1 | gpgprismgr4cycllem4 48045 |
. . . . . . 7
⊢
(♯‘𝑃) =
5 |
| 48 | | df-5 12304 |
. . . . . . 7
⊢ 5 = (4 +
1) |
| 49 | 47, 48 | eqtri 2758 |
. . . . . 6
⊢
(♯‘𝑃) =
(4 + 1) |
| 50 | 49 | oveq2i 7414 |
. . . . 5
⊢
(0..^(♯‘𝑃)) = (0..^(4 + 1)) |
| 51 | 43, 46, 50 | 3eqtr4i 2768 |
. . . 4
⊢
(0...(♯‘𝐹)) = (0..^(♯‘𝑃)) |
| 52 | 51 | a1i 11 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘3) → (0...(♯‘𝐹)) = (0..^(♯‘𝑃))) |
| 53 | 52 | feq2d 6691 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘3) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ↔ 𝑃:(0..^(♯‘𝑃))⟶(Vtx‘𝐺))) |
| 54 | 40, 53 | mpbird 257 |
1
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |