Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgprismgr4cycllem9 Structured version   Visualization version   GIF version

Theorem gpgprismgr4cycllem9 48086
Description: Lemma 9 for gpgprismgr4cycl0 48089. (Contributed by AV, 3-Nov-2025.)
Hypotheses
Ref Expression
gpgprismgr4cycl.p 𝑃 = ⟨“⟨0, 0⟩⟨0, 1⟩⟨1, 1⟩⟨1, 0⟩⟨0, 0⟩”⟩
gpgprismgr4cycl.f 𝐹 = ⟨“{⟨0, 0⟩, ⟨0, 1⟩} {⟨0, 1⟩, ⟨1, 1⟩} {⟨1, 1⟩, ⟨1, 0⟩} {⟨1, 0⟩, ⟨0, 0⟩}”⟩
gpgprismgr4cycl.g 𝐺 = (𝑁 gPetersenGr 1)
Assertion
Ref Expression
gpgprismgr4cycllem9 (𝑁 ∈ (ℤ‘3) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))

Proof of Theorem gpgprismgr4cycllem9
StepHypRef Expression
1 gpgprismgr4cycl.p . . . 4 𝑃 = ⟨“⟨0, 0⟩⟨0, 1⟩⟨1, 1⟩⟨1, 0⟩⟨0, 0⟩”⟩
2 eluz3nn 12824 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
3 lbfzo0 13636 . . . . . . 7 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
42, 3sylibr 234 . . . . . 6 (𝑁 ∈ (ℤ‘3) → 0 ∈ (0..^𝑁))
5 1nn0 12434 . . . . . . . 8 1 ∈ ℕ0
65a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 1 ∈ ℕ0)
7 eluzelz 12779 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
8 uzuzle23 12819 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
9 eluz2gt1 12855 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
108, 9syl 17 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 1 < 𝑁)
11 elfzo0z 13638 . . . . . . 7 (1 ∈ (0..^𝑁) ↔ (1 ∈ ℕ0𝑁 ∈ ℤ ∧ 1 < 𝑁))
126, 7, 10, 11syl3anbrc 1344 . . . . . 6 (𝑁 ∈ (ℤ‘3) → 1 ∈ (0..^𝑁))
13 c0ex 11144 . . . . . . . . . 10 0 ∈ V
1413prid1 4722 . . . . . . . . 9 0 ∈ {0, 1}
1514a1i 11 . . . . . . . 8 ((0 ∈ (0..^𝑁) ∧ 1 ∈ (0..^𝑁)) → 0 ∈ {0, 1})
16 simpl 482 . . . . . . . 8 ((0 ∈ (0..^𝑁) ∧ 1 ∈ (0..^𝑁)) → 0 ∈ (0..^𝑁))
1715, 16opelxpd 5670 . . . . . . 7 ((0 ∈ (0..^𝑁) ∧ 1 ∈ (0..^𝑁)) → ⟨0, 0⟩ ∈ ({0, 1} × (0..^𝑁)))
18 simpr 484 . . . . . . . 8 ((0 ∈ (0..^𝑁) ∧ 1 ∈ (0..^𝑁)) → 1 ∈ (0..^𝑁))
1915, 18opelxpd 5670 . . . . . . 7 ((0 ∈ (0..^𝑁) ∧ 1 ∈ (0..^𝑁)) → ⟨0, 1⟩ ∈ ({0, 1} × (0..^𝑁)))
20 1ex 11146 . . . . . . . . . 10 1 ∈ V
2120prid2 4723 . . . . . . . . 9 1 ∈ {0, 1}
2221a1i 11 . . . . . . . 8 ((0 ∈ (0..^𝑁) ∧ 1 ∈ (0..^𝑁)) → 1 ∈ {0, 1})
2322, 18opelxpd 5670 . . . . . . 7 ((0 ∈ (0..^𝑁) ∧ 1 ∈ (0..^𝑁)) → ⟨1, 1⟩ ∈ ({0, 1} × (0..^𝑁)))
2422, 16opelxpd 5670 . . . . . . 7 ((0 ∈ (0..^𝑁) ∧ 1 ∈ (0..^𝑁)) → ⟨1, 0⟩ ∈ ({0, 1} × (0..^𝑁)))
2517, 19, 23, 24, 17s5cld 14816 . . . . . 6 ((0 ∈ (0..^𝑁) ∧ 1 ∈ (0..^𝑁)) → ⟨“⟨0, 0⟩⟨0, 1⟩⟨1, 1⟩⟨1, 0⟩⟨0, 0⟩”⟩ ∈ Word ({0, 1} × (0..^𝑁)))
264, 12, 25syl2anc 584 . . . . 5 (𝑁 ∈ (ℤ‘3) → ⟨“⟨0, 0⟩⟨0, 1⟩⟨1, 1⟩⟨1, 0⟩⟨0, 0⟩”⟩ ∈ Word ({0, 1} × (0..^𝑁)))
27 gpgprismgr4cycl.g . . . . . . . 8 𝐺 = (𝑁 gPetersenGr 1)
2827fveq2i 6843 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘(𝑁 gPetersenGr 1))
29 1elfzo1ceilhalf1 47331 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 1 ∈ (1..^(⌈‘(𝑁 / 2))))
30 eqid 2729 . . . . . . . . 9 (1..^(⌈‘(𝑁 / 2))) = (1..^(⌈‘(𝑁 / 2)))
31 eqid 2729 . . . . . . . . 9 (0..^𝑁) = (0..^𝑁)
3230, 31gpgvtx 48027 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 1 ∈ (1..^(⌈‘(𝑁 / 2)))) → (Vtx‘(𝑁 gPetersenGr 1)) = ({0, 1} × (0..^𝑁)))
332, 29, 32syl2anc 584 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → (Vtx‘(𝑁 gPetersenGr 1)) = ({0, 1} × (0..^𝑁)))
3428, 33eqtrid 2776 . . . . . 6 (𝑁 ∈ (ℤ‘3) → (Vtx‘𝐺) = ({0, 1} × (0..^𝑁)))
35 wrdeq 14477 . . . . . 6 ((Vtx‘𝐺) = ({0, 1} × (0..^𝑁)) → Word (Vtx‘𝐺) = Word ({0, 1} × (0..^𝑁)))
3634, 35syl 17 . . . . 5 (𝑁 ∈ (ℤ‘3) → Word (Vtx‘𝐺) = Word ({0, 1} × (0..^𝑁)))
3726, 36eleqtrrd 2831 . . . 4 (𝑁 ∈ (ℤ‘3) → ⟨“⟨0, 0⟩⟨0, 1⟩⟨1, 1⟩⟨1, 0⟩⟨0, 0⟩”⟩ ∈ Word (Vtx‘𝐺))
381, 37eqeltrid 2832 . . 3 (𝑁 ∈ (ℤ‘3) → 𝑃 ∈ Word (Vtx‘𝐺))
39 wrdf 14459 . . 3 (𝑃 ∈ Word (Vtx‘𝐺) → 𝑃:(0..^(♯‘𝑃))⟶(Vtx‘𝐺))
4038, 39syl 17 . 2 (𝑁 ∈ (ℤ‘3) → 𝑃:(0..^(♯‘𝑃))⟶(Vtx‘𝐺))
41 4z 12543 . . . . . 6 4 ∈ ℤ
42 fzval3 13671 . . . . . 6 (4 ∈ ℤ → (0...4) = (0..^(4 + 1)))
4341, 42ax-mp 5 . . . . 5 (0...4) = (0..^(4 + 1))
44 gpgprismgr4cycl.f . . . . . . 7 𝐹 = ⟨“{⟨0, 0⟩, ⟨0, 1⟩} {⟨0, 1⟩, ⟨1, 1⟩} {⟨1, 1⟩, ⟨1, 0⟩} {⟨1, 0⟩, ⟨0, 0⟩}”⟩
4544gpgprismgr4cycllem1 48078 . . . . . 6 (♯‘𝐹) = 4
4645oveq2i 7380 . . . . 5 (0...(♯‘𝐹)) = (0...4)
471gpgprismgr4cycllem4 48081 . . . . . . 7 (♯‘𝑃) = 5
48 df-5 12228 . . . . . . 7 5 = (4 + 1)
4947, 48eqtri 2752 . . . . . 6 (♯‘𝑃) = (4 + 1)
5049oveq2i 7380 . . . . 5 (0..^(♯‘𝑃)) = (0..^(4 + 1))
5143, 46, 503eqtr4i 2762 . . . 4 (0...(♯‘𝐹)) = (0..^(♯‘𝑃))
5251a1i 11 . . 3 (𝑁 ∈ (ℤ‘3) → (0...(♯‘𝐹)) = (0..^(♯‘𝑃)))
5352feq2d 6654 . 2 (𝑁 ∈ (ℤ‘3) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ↔ 𝑃:(0..^(♯‘𝑃))⟶(Vtx‘𝐺)))
5440, 53mpbird 257 1 (𝑁 ∈ (ℤ‘3) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cpr 4587  cop 4591   class class class wbr 5102   × cxp 5629  wf 6495  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184   / cdiv 11811  cn 12162  2c2 12217  3c3 12218  4c4 12219  5c5 12220  0cn0 12418  cz 12505  cuz 12769  ...cfz 13444  ..^cfzo 13591  cceil 13729  chash 14271  Word cword 14454  ⟨“cs4 14785  ⟨“cs5 14786  Vtxcvtx 28976   gPetersenGr cgpg 48024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-ico 13288  df-fz 13445  df-fzo 13592  df-fl 13730  df-ceil 13731  df-hash 14272  df-word 14455  df-concat 14512  df-s1 14537  df-s2 14790  df-s3 14791  df-s4 14792  df-s5 14793  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-edgf 28969  df-vtx 28978  df-gpg 48025
This theorem is referenced by:  gpgprismgr4cycllem11  48088
  Copyright terms: Public domain W3C validator