Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > geoisum1 | Structured version Visualization version GIF version |
Description: The infinite sum of 𝐴↑1 + 𝐴↑2... is (𝐴 / (1 − 𝐴)). (Contributed by NM, 1-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.) |
Ref | Expression |
---|---|
geoisum1 | ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ (𝐴↑𝑘) = (𝐴 / (1 − 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 12714 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1zzd 12444 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ ℤ) | |
3 | oveq2 7337 | . . . . 5 ⊢ (𝑛 = 𝑘 → (𝐴↑𝑛) = (𝐴↑𝑘)) | |
4 | eqid 2736 | . . . . 5 ⊢ (𝑛 ∈ ℕ ↦ (𝐴↑𝑛)) = (𝑛 ∈ ℕ ↦ (𝐴↑𝑛)) | |
5 | ovex 7362 | . . . . 5 ⊢ (𝐴↑𝑘) ∈ V | |
6 | 3, 4, 5 | fvmpt 6925 | . . . 4 ⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
7 | 6 | adantl 482 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
8 | simpl 483 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ ℂ) | |
9 | nnnn0 12333 | . . . 4 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
10 | expcl 13893 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℂ) | |
11 | 8, 9, 10 | syl2an 596 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (𝐴↑𝑘) ∈ ℂ) |
12 | simpr 485 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) < 1) | |
13 | 1nn0 12342 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
14 | 13 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ ℕ0) |
15 | elnnuz 12715 | . . . . 5 ⊢ (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ≥‘1)) | |
16 | 15, 7 | sylan2br 595 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ (ℤ≥‘1)) → ((𝑛 ∈ ℕ ↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
17 | 8, 12, 14, 16 | geolim2 15674 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (𝐴↑𝑛))) ⇝ ((𝐴↑1) / (1 − 𝐴))) |
18 | 1, 2, 7, 11, 17 | isumclim 15560 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ (𝐴↑𝑘) = ((𝐴↑1) / (1 − 𝐴))) |
19 | exp1 13881 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
20 | 19 | adantr 481 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝐴↑1) = 𝐴) |
21 | 20 | oveq1d 7344 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((𝐴↑1) / (1 − 𝐴)) = (𝐴 / (1 − 𝐴))) |
22 | 18, 21 | eqtrd 2776 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ (𝐴↑𝑘) = (𝐴 / (1 − 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 class class class wbr 5089 ↦ cmpt 5172 ‘cfv 6473 (class class class)co 7329 ℂcc 10962 1c1 10965 < clt 11102 − cmin 11298 / cdiv 11725 ℕcn 12066 ℕ0cn0 12326 ℤ≥cuz 12675 ↑cexp 13875 abscabs 15036 Σcsu 15488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-inf2 9490 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 ax-pre-sup 11042 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-se 5570 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-isom 6482 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-pm 8681 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-sup 9291 df-inf 9292 df-oi 9359 df-card 9788 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-div 11726 df-nn 12067 df-2 12129 df-3 12130 df-n0 12327 df-z 12413 df-uz 12676 df-rp 12824 df-fz 13333 df-fzo 13476 df-fl 13605 df-seq 13815 df-exp 13876 df-hash 14138 df-cj 14901 df-re 14902 df-im 14903 df-sqrt 15037 df-abs 15038 df-clim 15288 df-rlim 15289 df-sum 15489 |
This theorem is referenced by: geoisum1c 15683 geoihalfsum 15685 |
Copyright terms: Public domain | W3C validator |