MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geoisum1 Structured version   Visualization version   GIF version

Theorem geoisum1 15831
Description: The infinite sum of 𝐴↑1 + 𝐴↑2... is (𝐴 / (1 − 𝐴)). (Contributed by NM, 1-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
Assertion
Ref Expression
geoisum1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ (𝐴𝑘) = (𝐴 / (1 − 𝐴)))
Distinct variable group:   𝐴,𝑘

Proof of Theorem geoisum1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12869 . . 3 ℕ = (ℤ‘1)
2 1zzd 12597 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ ℤ)
3 oveq2 7413 . . . . 5 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
4 eqid 2726 . . . . 5 (𝑛 ∈ ℕ ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ ↦ (𝐴𝑛))
5 ovex 7438 . . . . 5 (𝐴𝑘) ∈ V
63, 4, 5fvmpt 6992 . . . 4 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
76adantl 481 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
8 simpl 482 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ ℂ)
9 nnnn0 12483 . . . 4 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
10 expcl 14050 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
118, 9, 10syl2an 595 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
12 simpr 484 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) < 1)
13 1nn0 12492 . . . . 5 1 ∈ ℕ0
1413a1i 11 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ ℕ0)
15 elnnuz 12870 . . . . 5 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
1615, 7sylan2br 594 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
178, 12, 14, 16geolim2 15823 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (𝐴𝑛))) ⇝ ((𝐴↑1) / (1 − 𝐴)))
181, 2, 7, 11, 17isumclim 15709 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ (𝐴𝑘) = ((𝐴↑1) / (1 − 𝐴)))
19 exp1 14038 . . . 4 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
2019adantr 480 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝐴↑1) = 𝐴)
2120oveq1d 7420 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((𝐴↑1) / (1 − 𝐴)) = (𝐴 / (1 − 𝐴)))
2218, 21eqtrd 2766 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ (𝐴𝑘) = (𝐴 / (1 − 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098   class class class wbr 5141  cmpt 5224  cfv 6537  (class class class)co 7405  cc 11110  1c1 11113   < clt 11252  cmin 11448   / cdiv 11875  cn 12216  0cn0 12476  cuz 12826  cexp 14032  abscabs 15187  Σcsu 15638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-isom 6546  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12981  df-fz 13491  df-fzo 13634  df-fl 13763  df-seq 13973  df-exp 14033  df-hash 14296  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-clim 15438  df-rlim 15439  df-sum 15639
This theorem is referenced by:  geoisum1c  15832  geoihalfsum  15834
  Copyright terms: Public domain W3C validator