MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geoisum1 Structured version   Visualization version   GIF version

Theorem geoisum1 15900
Description: The infinite sum of 𝐴↑1 + 𝐴↑2... is (𝐴 / (1 − 𝐴)). (Contributed by NM, 1-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
Assertion
Ref Expression
geoisum1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ (𝐴𝑘) = (𝐴 / (1 − 𝐴)))
Distinct variable group:   𝐴,𝑘

Proof of Theorem geoisum1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12900 . . 3 ℕ = (ℤ‘1)
2 1zzd 12628 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ ℤ)
3 oveq2 7418 . . . . 5 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
4 eqid 2736 . . . . 5 (𝑛 ∈ ℕ ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ ↦ (𝐴𝑛))
5 ovex 7443 . . . . 5 (𝐴𝑘) ∈ V
63, 4, 5fvmpt 6991 . . . 4 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
76adantl 481 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
8 simpl 482 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ ℂ)
9 nnnn0 12513 . . . 4 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
10 expcl 14102 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
118, 9, 10syl2an 596 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
12 simpr 484 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) < 1)
13 1nn0 12522 . . . . 5 1 ∈ ℕ0
1413a1i 11 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ ℕ0)
15 elnnuz 12901 . . . . 5 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
1615, 7sylan2br 595 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
178, 12, 14, 16geolim2 15892 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (𝐴𝑛))) ⇝ ((𝐴↑1) / (1 − 𝐴)))
181, 2, 7, 11, 17isumclim 15778 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ (𝐴𝑘) = ((𝐴↑1) / (1 − 𝐴)))
19 exp1 14090 . . . 4 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
2019adantr 480 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝐴↑1) = 𝐴)
2120oveq1d 7425 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((𝐴↑1) / (1 − 𝐴)) = (𝐴 / (1 − 𝐴)))
2218, 21eqtrd 2771 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ (𝐴𝑘) = (𝐴 / (1 − 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5124  cmpt 5206  cfv 6536  (class class class)co 7410  cc 11132  1c1 11135   < clt 11274  cmin 11471   / cdiv 11899  cn 12245  0cn0 12506  cuz 12857  cexp 14084  abscabs 15258  Σcsu 15707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510  df-sum 15708
This theorem is referenced by:  geoisum1c  15901  geoihalfsum  15903
  Copyright terms: Public domain W3C validator