MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumsplit2 Structured version   Visualization version   GIF version

Theorem gsumsplit2 19947
Description: Split a group sum into two parts. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 5-Jun-2019.)
Hypotheses
Ref Expression
gsumsplit2.b 𝐵 = (Base‘𝐺)
gsumsplit2.z 0 = (0g𝐺)
gsumsplit2.p + = (+g𝐺)
gsumsplit2.g (𝜑𝐺 ∈ CMnd)
gsumsplit2.a (𝜑𝐴𝑉)
gsumsplit2.f ((𝜑𝑘𝐴) → 𝑋𝐵)
gsumsplit2.w (𝜑 → (𝑘𝐴𝑋) finSupp 0 )
gsumsplit2.i (𝜑 → (𝐶𝐷) = ∅)
gsumsplit2.u (𝜑𝐴 = (𝐶𝐷))
Assertion
Ref Expression
gsumsplit2 (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((𝐺 Σg (𝑘𝐶𝑋)) + (𝐺 Σg (𝑘𝐷𝑋))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝐷,𝑘   𝜑,𝑘
Allowed substitution hints:   + (𝑘)   𝐺(𝑘)   𝑉(𝑘)   𝑋(𝑘)   0 (𝑘)

Proof of Theorem gsumsplit2
StepHypRef Expression
1 gsumsplit2.b . . 3 𝐵 = (Base‘𝐺)
2 gsumsplit2.z . . 3 0 = (0g𝐺)
3 gsumsplit2.p . . 3 + = (+g𝐺)
4 gsumsplit2.g . . 3 (𝜑𝐺 ∈ CMnd)
5 gsumsplit2.a . . 3 (𝜑𝐴𝑉)
6 gsumsplit2.f . . . 4 ((𝜑𝑘𝐴) → 𝑋𝐵)
76fmpttd 7135 . . 3 (𝜑 → (𝑘𝐴𝑋):𝐴𝐵)
8 gsumsplit2.w . . 3 (𝜑 → (𝑘𝐴𝑋) finSupp 0 )
9 gsumsplit2.i . . 3 (𝜑 → (𝐶𝐷) = ∅)
10 gsumsplit2.u . . 3 (𝜑𝐴 = (𝐶𝐷))
111, 2, 3, 4, 5, 7, 8, 9, 10gsumsplit 19946 . 2 (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((𝐺 Σg ((𝑘𝐴𝑋) ↾ 𝐶)) + (𝐺 Σg ((𝑘𝐴𝑋) ↾ 𝐷))))
12 ssun1 4178 . . . . . 6 𝐶 ⊆ (𝐶𝐷)
1312, 10sseqtrrid 4027 . . . . 5 (𝜑𝐶𝐴)
1413resmptd 6058 . . . 4 (𝜑 → ((𝑘𝐴𝑋) ↾ 𝐶) = (𝑘𝐶𝑋))
1514oveq2d 7447 . . 3 (𝜑 → (𝐺 Σg ((𝑘𝐴𝑋) ↾ 𝐶)) = (𝐺 Σg (𝑘𝐶𝑋)))
16 ssun2 4179 . . . . . 6 𝐷 ⊆ (𝐶𝐷)
1716, 10sseqtrrid 4027 . . . . 5 (𝜑𝐷𝐴)
1817resmptd 6058 . . . 4 (𝜑 → ((𝑘𝐴𝑋) ↾ 𝐷) = (𝑘𝐷𝑋))
1918oveq2d 7447 . . 3 (𝜑 → (𝐺 Σg ((𝑘𝐴𝑋) ↾ 𝐷)) = (𝐺 Σg (𝑘𝐷𝑋)))
2015, 19oveq12d 7449 . 2 (𝜑 → ((𝐺 Σg ((𝑘𝐴𝑋) ↾ 𝐶)) + (𝐺 Σg ((𝑘𝐴𝑋) ↾ 𝐷))) = ((𝐺 Σg (𝑘𝐶𝑋)) + (𝐺 Σg (𝑘𝐷𝑋))))
2111, 20eqtrd 2777 1 (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((𝐺 Σg (𝑘𝐶𝑋)) + (𝐺 Σg (𝑘𝐷𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cun 3949  cin 3950  c0 4333   class class class wbr 5143  cmpt 5225  cres 5687  cfv 6561  (class class class)co 7431   finSupp cfsupp 9401  Basecbs 17247  +gcplusg 17297  0gc0g 17484   Σg cgsu 17485  CMndccmn 19798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-0g 17486  df-gsum 17487  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-cntz 19335  df-cmn 19800
This theorem is referenced by:  gsummptfidmsplit  19948  gsumdifsnd  19979  psdmul  22170  chfacfscmulgsum  22866  chfacfpmmulgsum  22870  tdeglem4  26099  gsummptres  33055  gsummptres2  33056  elrspunsn  33457  evl1deg1  33601  evl1deg2  33602  evl1deg3  33603  lbsdiflsp0  33677
  Copyright terms: Public domain W3C validator