| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumsplit2 | Structured version Visualization version GIF version | ||
| Description: Split a group sum into two parts. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 5-Jun-2019.) |
| Ref | Expression |
|---|---|
| gsumsplit2.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumsplit2.z | ⊢ 0 = (0g‘𝐺) |
| gsumsplit2.p | ⊢ + = (+g‘𝐺) |
| gsumsplit2.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsumsplit2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsumsplit2.f | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
| gsumsplit2.w | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) |
| gsumsplit2.i | ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) |
| gsumsplit2.u | ⊢ (𝜑 → 𝐴 = (𝐶 ∪ 𝐷)) |
| Ref | Expression |
|---|---|
| gsumsplit2 | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ 𝐷 ↦ 𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsplit2.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsumsplit2.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsumsplit2.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | gsumsplit2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 5 | gsumsplit2.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 6 | gsumsplit2.f | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
| 7 | 6 | fmpttd 7043 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋):𝐴⟶𝐵) |
| 8 | gsumsplit2.w | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) | |
| 9 | gsumsplit2.i | . . 3 ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) | |
| 10 | gsumsplit2.u | . . 3 ⊢ (𝜑 → 𝐴 = (𝐶 ∪ 𝐷)) | |
| 11 | 1, 2, 3, 4, 5, 7, 8, 9, 10 | gsumsplit 19835 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐶)) + (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐷)))) |
| 12 | ssun1 4123 | . . . . . 6 ⊢ 𝐶 ⊆ (𝐶 ∪ 𝐷) | |
| 13 | 12, 10 | sseqtrrid 3973 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| 14 | 13 | resmptd 5984 | . . . 4 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐶) = (𝑘 ∈ 𝐶 ↦ 𝑋)) |
| 15 | 14 | oveq2d 7357 | . . 3 ⊢ (𝜑 → (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐶)) = (𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋))) |
| 16 | ssun2 4124 | . . . . . 6 ⊢ 𝐷 ⊆ (𝐶 ∪ 𝐷) | |
| 17 | 16, 10 | sseqtrrid 3973 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
| 18 | 17 | resmptd 5984 | . . . 4 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐷) = (𝑘 ∈ 𝐷 ↦ 𝑋)) |
| 19 | 18 | oveq2d 7357 | . . 3 ⊢ (𝜑 → (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐷)) = (𝐺 Σg (𝑘 ∈ 𝐷 ↦ 𝑋))) |
| 20 | 15, 19 | oveq12d 7359 | . 2 ⊢ (𝜑 → ((𝐺 Σg ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐶)) + (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐷))) = ((𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ 𝐷 ↦ 𝑋)))) |
| 21 | 11, 20 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ 𝐷 ↦ 𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∪ cun 3895 ∩ cin 3896 ∅c0 4278 class class class wbr 5086 ↦ cmpt 5167 ↾ cres 5613 ‘cfv 6476 (class class class)co 7341 finSupp cfsupp 9240 Basecbs 17115 +gcplusg 17156 0gc0g 17338 Σg cgsu 17339 CMndccmn 19687 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-fzo 13550 df-seq 13904 df-hash 14233 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-0g 17340 df-gsum 17341 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-cntz 19224 df-cmn 19689 |
| This theorem is referenced by: gsummptfidmsplit 19837 gsumdifsnd 19868 psdmul 22076 chfacfscmulgsum 22770 chfacfpmmulgsum 22774 tdeglem4 25987 gsummptres 33024 gsummptres2 33025 elrspunsn 33386 evl1deg1 33531 evl1deg2 33532 evl1deg3 33533 lbsdiflsp0 33631 |
| Copyright terms: Public domain | W3C validator |