Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsumsplit2 | Structured version Visualization version GIF version |
Description: Split a group sum into two parts. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 5-Jun-2019.) |
Ref | Expression |
---|---|
gsumsplit2.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumsplit2.z | ⊢ 0 = (0g‘𝐺) |
gsumsplit2.p | ⊢ + = (+g‘𝐺) |
gsumsplit2.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsumsplit2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsumsplit2.f | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
gsumsplit2.w | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) |
gsumsplit2.i | ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) |
gsumsplit2.u | ⊢ (𝜑 → 𝐴 = (𝐶 ∪ 𝐷)) |
Ref | Expression |
---|---|
gsumsplit2 | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ 𝐷 ↦ 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumsplit2.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumsplit2.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | gsumsplit2.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | gsumsplit2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
5 | gsumsplit2.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | gsumsplit2.f | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
7 | 6 | fmpttd 6871 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋):𝐴⟶𝐵) |
8 | gsumsplit2.w | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) | |
9 | gsumsplit2.i | . . 3 ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) | |
10 | gsumsplit2.u | . . 3 ⊢ (𝜑 → 𝐴 = (𝐶 ∪ 𝐷)) | |
11 | 1, 2, 3, 4, 5, 7, 8, 9, 10 | gsumsplit 19117 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐶)) + (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐷)))) |
12 | ssun1 4078 | . . . . . 6 ⊢ 𝐶 ⊆ (𝐶 ∪ 𝐷) | |
13 | 12, 10 | sseqtrrid 3946 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
14 | 13 | resmptd 5881 | . . . 4 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐶) = (𝑘 ∈ 𝐶 ↦ 𝑋)) |
15 | 14 | oveq2d 7167 | . . 3 ⊢ (𝜑 → (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐶)) = (𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋))) |
16 | ssun2 4079 | . . . . . 6 ⊢ 𝐷 ⊆ (𝐶 ∪ 𝐷) | |
17 | 16, 10 | sseqtrrid 3946 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
18 | 17 | resmptd 5881 | . . . 4 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐷) = (𝑘 ∈ 𝐷 ↦ 𝑋)) |
19 | 18 | oveq2d 7167 | . . 3 ⊢ (𝜑 → (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐷)) = (𝐺 Σg (𝑘 ∈ 𝐷 ↦ 𝑋))) |
20 | 15, 19 | oveq12d 7169 | . 2 ⊢ (𝜑 → ((𝐺 Σg ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐶)) + (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐷))) = ((𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ 𝐷 ↦ 𝑋)))) |
21 | 11, 20 | eqtrd 2794 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ 𝐷 ↦ 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ∪ cun 3857 ∩ cin 3858 ∅c0 4226 class class class wbr 5033 ↦ cmpt 5113 ↾ cres 5527 ‘cfv 6336 (class class class)co 7151 finSupp cfsupp 8867 Basecbs 16542 +gcplusg 16624 0gc0g 16772 Σg cgsu 16773 CMndccmn 18974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-iin 4887 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-se 5485 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-isom 6345 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-of 7406 df-om 7581 df-1st 7694 df-2nd 7695 df-supp 7837 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-fsupp 8868 df-oi 9008 df-card 9402 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-nn 11676 df-2 11738 df-n0 11936 df-z 12022 df-uz 12284 df-fz 12941 df-fzo 13084 df-seq 13420 df-hash 13742 df-ndx 16545 df-slot 16546 df-base 16548 df-sets 16549 df-ress 16550 df-plusg 16637 df-0g 16774 df-gsum 16775 df-mre 16916 df-mrc 16917 df-acs 16919 df-mgm 17919 df-sgrp 17968 df-mnd 17979 df-submnd 18024 df-cntz 18515 df-cmn 18976 |
This theorem is referenced by: gsummptfidmsplit 19119 gsumdifsnd 19150 chfacfscmulgsum 21561 chfacfpmmulgsum 21565 tdeglem4 24760 tdeglem4OLD 24761 gsummptres 30839 gsummptres2 30840 lbsdiflsp0 31229 |
Copyright terms: Public domain | W3C validator |