Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkerre Structured version   Visualization version   GIF version

Theorem dirkerre 43880
Description: The Dirichlet Kernel at any point evaluates to a real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
dirkerre.1 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
Assertion
Ref Expression
dirkerre ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → ((𝐷𝑁)‘𝑆) ∈ ℝ)
Distinct variable groups:   𝑁,𝑠   𝑛,𝑠
Allowed substitution hints:   𝐷(𝑛,𝑠)   𝑆(𝑛,𝑠)   𝑁(𝑛)

Proof of Theorem dirkerre
StepHypRef Expression
1 dirkerre.1 . . 3 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
21dirkerval2 43879 . 2 ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → ((𝐷𝑁)‘𝑆) = if((𝑆 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2))))))
3 2re 12117 . . . . . . . 8 2 ∈ ℝ
43a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 2 ∈ ℝ)
5 nnre 12050 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
64, 5remulcld 11075 . . . . . 6 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ)
7 1red 11046 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℝ)
86, 7readdcld 11074 . . . . 5 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℝ)
9 pire 25686 . . . . . . 7 π ∈ ℝ
109a1i 11 . . . . . 6 (𝑁 ∈ ℕ → π ∈ ℝ)
114, 10remulcld 11075 . . . . 5 (𝑁 ∈ ℕ → (2 · π) ∈ ℝ)
12 2cnd 12121 . . . . . 6 (𝑁 ∈ ℕ → 2 ∈ ℂ)
1310recnd 11073 . . . . . 6 (𝑁 ∈ ℕ → π ∈ ℂ)
14 2ne0 12147 . . . . . . 7 2 ≠ 0
1514a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 2 ≠ 0)
16 0re 11047 . . . . . . . 8 0 ∈ ℝ
17 pipos 25688 . . . . . . . 8 0 < π
1816, 17gtneii 11157 . . . . . . 7 π ≠ 0
1918a1i 11 . . . . . 6 (𝑁 ∈ ℕ → π ≠ 0)
2012, 13, 15, 19mulne0d 11697 . . . . 5 (𝑁 ∈ ℕ → (2 · π) ≠ 0)
218, 11, 20redivcld 11873 . . . 4 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1) / (2 · π)) ∈ ℝ)
2221ad2antrr 723 . . 3 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ (𝑆 mod (2 · π)) = 0) → (((2 · 𝑁) + 1) / (2 · π)) ∈ ℝ)
23 dirker2re 43877 . . 3 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2)))) ∈ ℝ)
2422, 23ifclda 4504 . 2 ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → if((𝑆 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2))))) ∈ ℝ)
252, 24eqeltrd 2838 1 ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → ((𝐷𝑁)‘𝑆) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wne 2941  ifcif 4469  cmpt 5168  cfv 6463  (class class class)co 7313  cr 10940  0cc0 10941  1c1 10942   + caddc 10944   · cmul 10946   / cdiv 11702  cn 12043  2c2 12098   mod cmo 13659  sincsin 15842  πcpi 15845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-inf2 9467  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018  ax-pre-sup 11019  ax-addf 11020  ax-mulf 11021
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4849  df-int 4891  df-iun 4937  df-iin 4938  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-se 5561  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-isom 6472  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-of 7571  df-om 7756  df-1st 7874  df-2nd 7875  df-supp 8023  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-1o 8342  df-2o 8343  df-er 8544  df-map 8663  df-pm 8664  df-ixp 8732  df-en 8780  df-dom 8781  df-sdom 8782  df-fin 8783  df-fsupp 9197  df-fi 9238  df-sup 9269  df-inf 9270  df-oi 9337  df-card 9765  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-div 11703  df-nn 12044  df-2 12106  df-3 12107  df-4 12108  df-5 12109  df-6 12110  df-7 12111  df-8 12112  df-9 12113  df-n0 12304  df-z 12390  df-dec 12508  df-uz 12653  df-q 12759  df-rp 12801  df-xneg 12918  df-xadd 12919  df-xmul 12920  df-ioo 13153  df-ioc 13154  df-ico 13155  df-icc 13156  df-fz 13310  df-fzo 13453  df-fl 13582  df-mod 13660  df-seq 13792  df-exp 13853  df-fac 14058  df-bc 14087  df-hash 14115  df-shft 14847  df-cj 14879  df-re 14880  df-im 14881  df-sqrt 15015  df-abs 15016  df-limsup 15249  df-clim 15266  df-rlim 15267  df-sum 15467  df-ef 15846  df-sin 15848  df-cos 15849  df-pi 15851  df-struct 16915  df-sets 16932  df-slot 16950  df-ndx 16962  df-base 16980  df-ress 17009  df-plusg 17042  df-mulr 17043  df-starv 17044  df-sca 17045  df-vsca 17046  df-ip 17047  df-tset 17048  df-ple 17049  df-ds 17051  df-unif 17052  df-hom 17053  df-cco 17054  df-rest 17200  df-topn 17201  df-0g 17219  df-gsum 17220  df-topgen 17221  df-pt 17222  df-prds 17225  df-xrs 17280  df-qtop 17285  df-imas 17286  df-xps 17288  df-mre 17362  df-mrc 17363  df-acs 17365  df-mgm 18393  df-sgrp 18442  df-mnd 18453  df-submnd 18498  df-mulg 18768  df-cntz 18990  df-cmn 19455  df-psmet 20660  df-xmet 20661  df-met 20662  df-bl 20663  df-mopn 20664  df-fbas 20665  df-fg 20666  df-cnfld 20669  df-top 22114  df-topon 22131  df-topsp 22153  df-bases 22167  df-cld 22241  df-ntr 22242  df-cls 22243  df-nei 22320  df-lp 22358  df-perf 22359  df-cn 22449  df-cnp 22450  df-haus 22537  df-tx 22784  df-hmeo 22977  df-fil 23068  df-fm 23160  df-flim 23161  df-flf 23162  df-xms 23544  df-ms 23545  df-tms 23546  df-cncf 24112  df-limc 25101  df-dv 25102
This theorem is referenced by:  dirkerf  43882  fourierdlem66  43957  fourierdlem95  43986  fourierdlem101  43992  fourierdlem112  44003
  Copyright terms: Public domain W3C validator