Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hash2iun1dif1 | Structured version Visualization version GIF version |
Description: The cardinality of a nested disjoint indexed union. (Contributed by AV, 9-Jan-2022.) |
Ref | Expression |
---|---|
hash2iun1dif1.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
hash2iun1dif1.b | ⊢ 𝐵 = (𝐴 ∖ {𝑥}) |
hash2iun1dif1.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ Fin) |
hash2iun1dif1.da | ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) |
hash2iun1dif1.db | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Disj 𝑦 ∈ 𝐵 𝐶) |
hash2iun1dif1.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (♯‘𝐶) = 1) |
Ref | Expression |
---|---|
hash2iun1dif1 | ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) = ((♯‘𝐴) · ((♯‘𝐴) − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hash2iun1dif1.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
2 | hash2iun1dif1.b | . . . 4 ⊢ 𝐵 = (𝐴 ∖ {𝑥}) | |
3 | diffi 8944 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ {𝑥}) ∈ Fin) | |
4 | 1, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 ∖ {𝑥}) ∈ Fin) |
5 | 4 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐴 ∖ {𝑥}) ∈ Fin) |
6 | 2, 5 | eqeltrid 2845 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) |
7 | hash2iun1dif1.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ Fin) | |
8 | hash2iun1dif1.da | . . 3 ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) | |
9 | hash2iun1dif1.db | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Disj 𝑦 ∈ 𝐵 𝐶) | |
10 | 1, 6, 7, 8, 9 | hash2iun 15533 | . 2 ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) = Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 (♯‘𝐶)) |
11 | hash2iun1dif1.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (♯‘𝐶) = 1) | |
12 | 11 | 2sumeq2dv 15415 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 (♯‘𝐶) = Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 1) |
13 | 1cnd 10971 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 1 ∈ ℂ) | |
14 | fsumconst 15500 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑦 ∈ 𝐵 1 = ((♯‘𝐵) · 1)) | |
15 | 6, 13, 14 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Σ𝑦 ∈ 𝐵 1 = ((♯‘𝐵) · 1)) |
16 | 15 | sumeq2dv 15413 | . . 3 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 1 = Σ𝑥 ∈ 𝐴 ((♯‘𝐵) · 1)) |
17 | 2 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = (𝐴 ∖ {𝑥})) |
18 | 17 | fveq2d 6775 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (♯‘𝐵) = (♯‘(𝐴 ∖ {𝑥}))) |
19 | hashdifsn 14127 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝐴) → (♯‘(𝐴 ∖ {𝑥})) = ((♯‘𝐴) − 1)) | |
20 | 1, 19 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (♯‘(𝐴 ∖ {𝑥})) = ((♯‘𝐴) − 1)) |
21 | 18, 20 | eqtrd 2780 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (♯‘𝐵) = ((♯‘𝐴) − 1)) |
22 | 21 | oveq1d 7286 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((♯‘𝐵) · 1) = (((♯‘𝐴) − 1) · 1)) |
23 | 22 | sumeq2dv 15413 | . . 3 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 ((♯‘𝐵) · 1) = Σ𝑥 ∈ 𝐴 (((♯‘𝐴) − 1) · 1)) |
24 | hashcl 14069 | . . . . . . . . 9 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
25 | 1, 24 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (♯‘𝐴) ∈ ℕ0) |
26 | 25 | nn0cnd 12295 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐴) ∈ ℂ) |
27 | peano2cnm 11287 | . . . . . . 7 ⊢ ((♯‘𝐴) ∈ ℂ → ((♯‘𝐴) − 1) ∈ ℂ) | |
28 | 26, 27 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((♯‘𝐴) − 1) ∈ ℂ) |
29 | 28 | mulid1d 10993 | . . . . 5 ⊢ (𝜑 → (((♯‘𝐴) − 1) · 1) = ((♯‘𝐴) − 1)) |
30 | 29 | sumeq2sdv 15414 | . . . 4 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 (((♯‘𝐴) − 1) · 1) = Σ𝑥 ∈ 𝐴 ((♯‘𝐴) − 1)) |
31 | fsumconst 15500 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ ((♯‘𝐴) − 1) ∈ ℂ) → Σ𝑥 ∈ 𝐴 ((♯‘𝐴) − 1) = ((♯‘𝐴) · ((♯‘𝐴) − 1))) | |
32 | 1, 28, 31 | syl2anc 584 | . . . 4 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 ((♯‘𝐴) − 1) = ((♯‘𝐴) · ((♯‘𝐴) − 1))) |
33 | 30, 32 | eqtrd 2780 | . . 3 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 (((♯‘𝐴) − 1) · 1) = ((♯‘𝐴) · ((♯‘𝐴) − 1))) |
34 | 16, 23, 33 | 3eqtrd 2784 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 1 = ((♯‘𝐴) · ((♯‘𝐴) − 1))) |
35 | 10, 12, 34 | 3eqtrd 2784 | 1 ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) = ((♯‘𝐴) · ((♯‘𝐴) − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ∖ cdif 3889 {csn 4567 ∪ ciun 4930 Disj wdisj 5044 ‘cfv 6432 (class class class)co 7271 Fincfn 8716 ℂcc 10870 1c1 10873 · cmul 10877 − cmin 11205 ℕ0cn0 12233 ♯chash 14042 Σcsu 15395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-inf2 9377 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-disj 5045 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-oadd 8292 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-sup 9179 df-oi 9247 df-dju 9660 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12582 df-rp 12730 df-fz 13239 df-fzo 13382 df-seq 13720 df-exp 13781 df-hash 14043 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-clim 15195 df-sum 15396 |
This theorem is referenced by: frgrhash2wsp 28692 fusgreghash2wspv 28695 |
Copyright terms: Public domain | W3C validator |