![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hash2iun1dif1 | Structured version Visualization version GIF version |
Description: The cardinality of a nested disjoint indexed union. (Contributed by AV, 9-Jan-2022.) |
Ref | Expression |
---|---|
hash2iun1dif1.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
hash2iun1dif1.b | ⊢ 𝐵 = (𝐴 ∖ {𝑥}) |
hash2iun1dif1.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ Fin) |
hash2iun1dif1.da | ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) |
hash2iun1dif1.db | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Disj 𝑦 ∈ 𝐵 𝐶) |
hash2iun1dif1.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (♯‘𝐶) = 1) |
Ref | Expression |
---|---|
hash2iun1dif1 | ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) = ((♯‘𝐴) · ((♯‘𝐴) − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hash2iun1dif1.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
2 | hash2iun1dif1.b | . . . 4 ⊢ 𝐵 = (𝐴 ∖ {𝑥}) | |
3 | diffi 9214 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ {𝑥}) ∈ Fin) | |
4 | 1, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 ∖ {𝑥}) ∈ Fin) |
5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐴 ∖ {𝑥}) ∈ Fin) |
6 | 2, 5 | eqeltrid 2843 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) |
7 | hash2iun1dif1.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ Fin) | |
8 | hash2iun1dif1.da | . . 3 ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) | |
9 | hash2iun1dif1.db | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Disj 𝑦 ∈ 𝐵 𝐶) | |
10 | 1, 6, 7, 8, 9 | hash2iun 15856 | . 2 ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) = Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 (♯‘𝐶)) |
11 | hash2iun1dif1.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (♯‘𝐶) = 1) | |
12 | 11 | 2sumeq2dv 15738 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 (♯‘𝐶) = Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 1) |
13 | 1cnd 11254 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 1 ∈ ℂ) | |
14 | fsumconst 15823 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑦 ∈ 𝐵 1 = ((♯‘𝐵) · 1)) | |
15 | 6, 13, 14 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Σ𝑦 ∈ 𝐵 1 = ((♯‘𝐵) · 1)) |
16 | 15 | sumeq2dv 15735 | . . 3 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 1 = Σ𝑥 ∈ 𝐴 ((♯‘𝐵) · 1)) |
17 | 2 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = (𝐴 ∖ {𝑥})) |
18 | 17 | fveq2d 6911 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (♯‘𝐵) = (♯‘(𝐴 ∖ {𝑥}))) |
19 | hashdifsn 14450 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝐴) → (♯‘(𝐴 ∖ {𝑥})) = ((♯‘𝐴) − 1)) | |
20 | 1, 19 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (♯‘(𝐴 ∖ {𝑥})) = ((♯‘𝐴) − 1)) |
21 | 18, 20 | eqtrd 2775 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (♯‘𝐵) = ((♯‘𝐴) − 1)) |
22 | 21 | oveq1d 7446 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((♯‘𝐵) · 1) = (((♯‘𝐴) − 1) · 1)) |
23 | 22 | sumeq2dv 15735 | . . 3 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 ((♯‘𝐵) · 1) = Σ𝑥 ∈ 𝐴 (((♯‘𝐴) − 1) · 1)) |
24 | hashcl 14392 | . . . . . . . . 9 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
25 | 1, 24 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (♯‘𝐴) ∈ ℕ0) |
26 | 25 | nn0cnd 12587 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐴) ∈ ℂ) |
27 | peano2cnm 11573 | . . . . . . 7 ⊢ ((♯‘𝐴) ∈ ℂ → ((♯‘𝐴) − 1) ∈ ℂ) | |
28 | 26, 27 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((♯‘𝐴) − 1) ∈ ℂ) |
29 | 28 | mulridd 11276 | . . . . 5 ⊢ (𝜑 → (((♯‘𝐴) − 1) · 1) = ((♯‘𝐴) − 1)) |
30 | 29 | sumeq2sdv 15736 | . . . 4 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 (((♯‘𝐴) − 1) · 1) = Σ𝑥 ∈ 𝐴 ((♯‘𝐴) − 1)) |
31 | fsumconst 15823 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ ((♯‘𝐴) − 1) ∈ ℂ) → Σ𝑥 ∈ 𝐴 ((♯‘𝐴) − 1) = ((♯‘𝐴) · ((♯‘𝐴) − 1))) | |
32 | 1, 28, 31 | syl2anc 584 | . . . 4 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 ((♯‘𝐴) − 1) = ((♯‘𝐴) · ((♯‘𝐴) − 1))) |
33 | 30, 32 | eqtrd 2775 | . . 3 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 (((♯‘𝐴) − 1) · 1) = ((♯‘𝐴) · ((♯‘𝐴) − 1))) |
34 | 16, 23, 33 | 3eqtrd 2779 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 1 = ((♯‘𝐴) · ((♯‘𝐴) − 1))) |
35 | 10, 12, 34 | 3eqtrd 2779 | 1 ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) = ((♯‘𝐴) · ((♯‘𝐴) − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∖ cdif 3960 {csn 4631 ∪ ciun 4996 Disj wdisj 5115 ‘cfv 6563 (class class class)co 7431 Fincfn 8984 ℂcc 11151 1c1 11154 · cmul 11158 − cmin 11490 ℕ0cn0 12524 ♯chash 14366 Σcsu 15719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-disj 5116 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-oadd 8509 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-oi 9548 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-sum 15720 |
This theorem is referenced by: frgrhash2wsp 30361 fusgreghash2wspv 30364 |
Copyright terms: Public domain | W3C validator |