MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash2iun1dif1 Structured version   Visualization version   GIF version

Theorem hash2iun1dif1 15860
Description: The cardinality of a nested disjoint indexed union. (Contributed by AV, 9-Jan-2022.)
Hypotheses
Ref Expression
hash2iun1dif1.a (𝜑𝐴 ∈ Fin)
hash2iun1dif1.b 𝐵 = (𝐴 ∖ {𝑥})
hash2iun1dif1.c ((𝜑𝑥𝐴𝑦𝐵) → 𝐶 ∈ Fin)
hash2iun1dif1.da (𝜑Disj 𝑥𝐴 𝑦𝐵 𝐶)
hash2iun1dif1.db ((𝜑𝑥𝐴) → Disj 𝑦𝐵 𝐶)
hash2iun1dif1.1 ((𝜑𝑥𝐴𝑦𝐵) → (♯‘𝐶) = 1)
Assertion
Ref Expression
hash2iun1dif1 (𝜑 → (♯‘ 𝑥𝐴 𝑦𝐵 𝐶) = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem hash2iun1dif1
StepHypRef Expression
1 hash2iun1dif1.a . . 3 (𝜑𝐴 ∈ Fin)
2 hash2iun1dif1.b . . . 4 𝐵 = (𝐴 ∖ {𝑥})
3 diffi 9215 . . . . . 6 (𝐴 ∈ Fin → (𝐴 ∖ {𝑥}) ∈ Fin)
41, 3syl 17 . . . . 5 (𝜑 → (𝐴 ∖ {𝑥}) ∈ Fin)
54adantr 480 . . . 4 ((𝜑𝑥𝐴) → (𝐴 ∖ {𝑥}) ∈ Fin)
62, 5eqeltrid 2845 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)
7 hash2iun1dif1.c . . 3 ((𝜑𝑥𝐴𝑦𝐵) → 𝐶 ∈ Fin)
8 hash2iun1dif1.da . . 3 (𝜑Disj 𝑥𝐴 𝑦𝐵 𝐶)
9 hash2iun1dif1.db . . 3 ((𝜑𝑥𝐴) → Disj 𝑦𝐵 𝐶)
101, 6, 7, 8, 9hash2iun 15859 . 2 (𝜑 → (♯‘ 𝑥𝐴 𝑦𝐵 𝐶) = Σ𝑥𝐴 Σ𝑦𝐵 (♯‘𝐶))
11 hash2iun1dif1.1 . . 3 ((𝜑𝑥𝐴𝑦𝐵) → (♯‘𝐶) = 1)
12112sumeq2dv 15741 . 2 (𝜑 → Σ𝑥𝐴 Σ𝑦𝐵 (♯‘𝐶) = Σ𝑥𝐴 Σ𝑦𝐵 1)
13 1cnd 11256 . . . . 5 ((𝜑𝑥𝐴) → 1 ∈ ℂ)
14 fsumconst 15826 . . . . 5 ((𝐵 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑦𝐵 1 = ((♯‘𝐵) · 1))
156, 13, 14syl2anc 584 . . . 4 ((𝜑𝑥𝐴) → Σ𝑦𝐵 1 = ((♯‘𝐵) · 1))
1615sumeq2dv 15738 . . 3 (𝜑 → Σ𝑥𝐴 Σ𝑦𝐵 1 = Σ𝑥𝐴 ((♯‘𝐵) · 1))
172a1i 11 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 = (𝐴 ∖ {𝑥}))
1817fveq2d 6910 . . . . . 6 ((𝜑𝑥𝐴) → (♯‘𝐵) = (♯‘(𝐴 ∖ {𝑥})))
19 hashdifsn 14453 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝑥𝐴) → (♯‘(𝐴 ∖ {𝑥})) = ((♯‘𝐴) − 1))
201, 19sylan 580 . . . . . 6 ((𝜑𝑥𝐴) → (♯‘(𝐴 ∖ {𝑥})) = ((♯‘𝐴) − 1))
2118, 20eqtrd 2777 . . . . 5 ((𝜑𝑥𝐴) → (♯‘𝐵) = ((♯‘𝐴) − 1))
2221oveq1d 7446 . . . 4 ((𝜑𝑥𝐴) → ((♯‘𝐵) · 1) = (((♯‘𝐴) − 1) · 1))
2322sumeq2dv 15738 . . 3 (𝜑 → Σ𝑥𝐴 ((♯‘𝐵) · 1) = Σ𝑥𝐴 (((♯‘𝐴) − 1) · 1))
24 hashcl 14395 . . . . . . . . 9 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
251, 24syl 17 . . . . . . . 8 (𝜑 → (♯‘𝐴) ∈ ℕ0)
2625nn0cnd 12589 . . . . . . 7 (𝜑 → (♯‘𝐴) ∈ ℂ)
27 peano2cnm 11575 . . . . . . 7 ((♯‘𝐴) ∈ ℂ → ((♯‘𝐴) − 1) ∈ ℂ)
2826, 27syl 17 . . . . . 6 (𝜑 → ((♯‘𝐴) − 1) ∈ ℂ)
2928mulridd 11278 . . . . 5 (𝜑 → (((♯‘𝐴) − 1) · 1) = ((♯‘𝐴) − 1))
3029sumeq2sdv 15739 . . . 4 (𝜑 → Σ𝑥𝐴 (((♯‘𝐴) − 1) · 1) = Σ𝑥𝐴 ((♯‘𝐴) − 1))
31 fsumconst 15826 . . . . 5 ((𝐴 ∈ Fin ∧ ((♯‘𝐴) − 1) ∈ ℂ) → Σ𝑥𝐴 ((♯‘𝐴) − 1) = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
321, 28, 31syl2anc 584 . . . 4 (𝜑 → Σ𝑥𝐴 ((♯‘𝐴) − 1) = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
3330, 32eqtrd 2777 . . 3 (𝜑 → Σ𝑥𝐴 (((♯‘𝐴) − 1) · 1) = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
3416, 23, 333eqtrd 2781 . 2 (𝜑 → Σ𝑥𝐴 Σ𝑦𝐵 1 = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
3510, 12, 343eqtrd 2781 1 (𝜑 → (♯‘ 𝑥𝐴 𝑦𝐵 𝐶) = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  cdif 3948  {csn 4626   ciun 4991  Disj wdisj 5110  cfv 6561  (class class class)co 7431  Fincfn 8985  cc 11153  1c1 11156   · cmul 11160  cmin 11492  0cn0 12526  chash 14369  Σcsu 15722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723
This theorem is referenced by:  frgrhash2wsp  30351  fusgreghash2wspv  30354
  Copyright terms: Public domain W3C validator