MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash2iun1dif1 Structured version   Visualization version   GIF version

Theorem hash2iun1dif1 15872
Description: The cardinality of a nested disjoint indexed union. (Contributed by AV, 9-Jan-2022.)
Hypotheses
Ref Expression
hash2iun1dif1.a (𝜑𝐴 ∈ Fin)
hash2iun1dif1.b 𝐵 = (𝐴 ∖ {𝑥})
hash2iun1dif1.c ((𝜑𝑥𝐴𝑦𝐵) → 𝐶 ∈ Fin)
hash2iun1dif1.da (𝜑Disj 𝑥𝐴 𝑦𝐵 𝐶)
hash2iun1dif1.db ((𝜑𝑥𝐴) → Disj 𝑦𝐵 𝐶)
hash2iun1dif1.1 ((𝜑𝑥𝐴𝑦𝐵) → (♯‘𝐶) = 1)
Assertion
Ref Expression
hash2iun1dif1 (𝜑 → (♯‘ 𝑥𝐴 𝑦𝐵 𝐶) = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem hash2iun1dif1
StepHypRef Expression
1 hash2iun1dif1.a . . 3 (𝜑𝐴 ∈ Fin)
2 hash2iun1dif1.b . . . 4 𝐵 = (𝐴 ∖ {𝑥})
3 diffi 9242 . . . . . 6 (𝐴 ∈ Fin → (𝐴 ∖ {𝑥}) ∈ Fin)
41, 3syl 17 . . . . 5 (𝜑 → (𝐴 ∖ {𝑥}) ∈ Fin)
54adantr 480 . . . 4 ((𝜑𝑥𝐴) → (𝐴 ∖ {𝑥}) ∈ Fin)
62, 5eqeltrid 2848 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)
7 hash2iun1dif1.c . . 3 ((𝜑𝑥𝐴𝑦𝐵) → 𝐶 ∈ Fin)
8 hash2iun1dif1.da . . 3 (𝜑Disj 𝑥𝐴 𝑦𝐵 𝐶)
9 hash2iun1dif1.db . . 3 ((𝜑𝑥𝐴) → Disj 𝑦𝐵 𝐶)
101, 6, 7, 8, 9hash2iun 15871 . 2 (𝜑 → (♯‘ 𝑥𝐴 𝑦𝐵 𝐶) = Σ𝑥𝐴 Σ𝑦𝐵 (♯‘𝐶))
11 hash2iun1dif1.1 . . 3 ((𝜑𝑥𝐴𝑦𝐵) → (♯‘𝐶) = 1)
12112sumeq2dv 15753 . 2 (𝜑 → Σ𝑥𝐴 Σ𝑦𝐵 (♯‘𝐶) = Σ𝑥𝐴 Σ𝑦𝐵 1)
13 1cnd 11285 . . . . 5 ((𝜑𝑥𝐴) → 1 ∈ ℂ)
14 fsumconst 15838 . . . . 5 ((𝐵 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑦𝐵 1 = ((♯‘𝐵) · 1))
156, 13, 14syl2anc 583 . . . 4 ((𝜑𝑥𝐴) → Σ𝑦𝐵 1 = ((♯‘𝐵) · 1))
1615sumeq2dv 15750 . . 3 (𝜑 → Σ𝑥𝐴 Σ𝑦𝐵 1 = Σ𝑥𝐴 ((♯‘𝐵) · 1))
172a1i 11 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 = (𝐴 ∖ {𝑥}))
1817fveq2d 6924 . . . . . 6 ((𝜑𝑥𝐴) → (♯‘𝐵) = (♯‘(𝐴 ∖ {𝑥})))
19 hashdifsn 14463 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝑥𝐴) → (♯‘(𝐴 ∖ {𝑥})) = ((♯‘𝐴) − 1))
201, 19sylan 579 . . . . . 6 ((𝜑𝑥𝐴) → (♯‘(𝐴 ∖ {𝑥})) = ((♯‘𝐴) − 1))
2118, 20eqtrd 2780 . . . . 5 ((𝜑𝑥𝐴) → (♯‘𝐵) = ((♯‘𝐴) − 1))
2221oveq1d 7463 . . . 4 ((𝜑𝑥𝐴) → ((♯‘𝐵) · 1) = (((♯‘𝐴) − 1) · 1))
2322sumeq2dv 15750 . . 3 (𝜑 → Σ𝑥𝐴 ((♯‘𝐵) · 1) = Σ𝑥𝐴 (((♯‘𝐴) − 1) · 1))
24 hashcl 14405 . . . . . . . . 9 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
251, 24syl 17 . . . . . . . 8 (𝜑 → (♯‘𝐴) ∈ ℕ0)
2625nn0cnd 12615 . . . . . . 7 (𝜑 → (♯‘𝐴) ∈ ℂ)
27 peano2cnm 11602 . . . . . . 7 ((♯‘𝐴) ∈ ℂ → ((♯‘𝐴) − 1) ∈ ℂ)
2826, 27syl 17 . . . . . 6 (𝜑 → ((♯‘𝐴) − 1) ∈ ℂ)
2928mulridd 11307 . . . . 5 (𝜑 → (((♯‘𝐴) − 1) · 1) = ((♯‘𝐴) − 1))
3029sumeq2sdv 15751 . . . 4 (𝜑 → Σ𝑥𝐴 (((♯‘𝐴) − 1) · 1) = Σ𝑥𝐴 ((♯‘𝐴) − 1))
31 fsumconst 15838 . . . . 5 ((𝐴 ∈ Fin ∧ ((♯‘𝐴) − 1) ∈ ℂ) → Σ𝑥𝐴 ((♯‘𝐴) − 1) = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
321, 28, 31syl2anc 583 . . . 4 (𝜑 → Σ𝑥𝐴 ((♯‘𝐴) − 1) = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
3330, 32eqtrd 2780 . . 3 (𝜑 → Σ𝑥𝐴 (((♯‘𝐴) − 1) · 1) = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
3416, 23, 333eqtrd 2784 . 2 (𝜑 → Σ𝑥𝐴 Σ𝑦𝐵 1 = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
3510, 12, 343eqtrd 2784 1 (𝜑 → (♯‘ 𝑥𝐴 𝑦𝐵 𝐶) = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  cdif 3973  {csn 4648   ciun 5015  Disj wdisj 5133  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182  1c1 11185   · cmul 11189  cmin 11520  0cn0 12553  chash 14379  Σcsu 15734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735
This theorem is referenced by:  frgrhash2wsp  30364  fusgreghash2wspv  30367
  Copyright terms: Public domain W3C validator