![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap14lem1a | Structured version Visualization version GIF version |
Description: Prior to part 14 in [Baer] p. 49, line 25. (Contributed by NM, 31-May-2015.) |
Ref | Expression |
---|---|
hdmap14lem1a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmap14lem1a.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmap14lem1a.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmap14lem1a.t | ⊢ · = ( ·𝑠 ‘𝑈) |
hdmap14lem1a.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hdmap14lem1a.b | ⊢ 𝐵 = (Base‘𝑅) |
hdmap14lem1a.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmap14lem2a.e | ⊢ ∙ = ( ·𝑠 ‘𝐶) |
hdmap14lem1a.l | ⊢ 𝐿 = (LSpan‘𝐶) |
hdmap14lem2a.p | ⊢ 𝑃 = (Scalar‘𝐶) |
hdmap14lem2a.a | ⊢ 𝐴 = (Base‘𝑃) |
hdmap14lem1a.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmap14lem1a.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmap14lem3a.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
hdmap14lem1a.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
hdmap14lem1a.z | ⊢ 0 = (0g‘𝑅) |
hdmap14lem1a.fn | ⊢ (𝜑 → 𝐹 ≠ 0 ) |
Ref | Expression |
---|---|
hdmap14lem1a | ⊢ (𝜑 → (𝐿‘{(𝑆‘𝑋)}) = (𝐿‘{(𝑆‘(𝐹 · 𝑋))})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap14lem1a.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmap14lem1a.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hdmap14lem1a.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | 1, 2, 3 | dvhlvec 37184 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LVec) |
5 | hdmap14lem1a.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
6 | hdmap14lem1a.fn | . . . 4 ⊢ (𝜑 → 𝐹 ≠ 0 ) | |
7 | hdmap14lem3a.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
8 | hdmap14lem1a.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
9 | hdmap14lem1a.r | . . . . 5 ⊢ 𝑅 = (Scalar‘𝑈) | |
10 | hdmap14lem1a.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑈) | |
11 | hdmap14lem1a.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
12 | hdmap14lem1a.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
13 | eqid 2825 | . . . . 5 ⊢ (LSpan‘𝑈) = (LSpan‘𝑈) | |
14 | 8, 9, 10, 11, 12, 13 | lspsnvs 19473 | . . . 4 ⊢ ((𝑈 ∈ LVec ∧ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → ((LSpan‘𝑈)‘{(𝐹 · 𝑋)}) = ((LSpan‘𝑈)‘{𝑋})) |
15 | 4, 5, 6, 7, 14 | syl121anc 1500 | . . 3 ⊢ (𝜑 → ((LSpan‘𝑈)‘{(𝐹 · 𝑋)}) = ((LSpan‘𝑈)‘{𝑋})) |
16 | 15 | fveq2d 6437 | . 2 ⊢ (𝜑 → (((mapd‘𝐾)‘𝑊)‘((LSpan‘𝑈)‘{(𝐹 · 𝑋)})) = (((mapd‘𝐾)‘𝑊)‘((LSpan‘𝑈)‘{𝑋}))) |
17 | hdmap14lem1a.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
18 | hdmap14lem1a.l | . . 3 ⊢ 𝐿 = (LSpan‘𝐶) | |
19 | eqid 2825 | . . 3 ⊢ ((mapd‘𝐾)‘𝑊) = ((mapd‘𝐾)‘𝑊) | |
20 | hdmap14lem1a.s | . . 3 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
21 | 1, 2, 3 | dvhlmod 37185 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
22 | 8, 9, 10, 11 | lmodvscl 19236 | . . . 4 ⊢ ((𝑈 ∈ LMod ∧ 𝐹 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹 · 𝑋) ∈ 𝑉) |
23 | 21, 5, 7, 22 | syl3anc 1496 | . . 3 ⊢ (𝜑 → (𝐹 · 𝑋) ∈ 𝑉) |
24 | 1, 2, 8, 13, 17, 18, 19, 20, 3, 23 | hdmap10 37915 | . 2 ⊢ (𝜑 → (((mapd‘𝐾)‘𝑊)‘((LSpan‘𝑈)‘{(𝐹 · 𝑋)})) = (𝐿‘{(𝑆‘(𝐹 · 𝑋))})) |
25 | 1, 2, 8, 13, 17, 18, 19, 20, 3, 7 | hdmap10 37915 | . 2 ⊢ (𝜑 → (((mapd‘𝐾)‘𝑊)‘((LSpan‘𝑈)‘{𝑋})) = (𝐿‘{(𝑆‘𝑋)})) |
26 | 16, 24, 25 | 3eqtr3rd 2870 | 1 ⊢ (𝜑 → (𝐿‘{(𝑆‘𝑋)}) = (𝐿‘{(𝑆‘(𝐹 · 𝑋))})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ≠ wne 2999 {csn 4397 ‘cfv 6123 (class class class)co 6905 Basecbs 16222 Scalarcsca 16308 ·𝑠 cvsca 16309 0gc0g 16453 LModclmod 19219 LSpanclspn 19330 LVecclvec 19461 HLchlt 35425 LHypclh 36059 DVecHcdvh 37153 LCDualclcd 37661 mapdcmpd 37699 HDMapchdma 37867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 ax-riotaBAD 35028 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-fal 1672 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-ot 4406 df-uni 4659 df-int 4698 df-iun 4742 df-iin 4743 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-of 7157 df-om 7327 df-1st 7428 df-2nd 7429 df-tpos 7617 df-undef 7664 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-oadd 7830 df-er 8009 df-map 8124 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-nn 11351 df-2 11414 df-3 11415 df-4 11416 df-5 11417 df-6 11418 df-n0 11619 df-z 11705 df-uz 11969 df-fz 12620 df-struct 16224 df-ndx 16225 df-slot 16226 df-base 16228 df-sets 16229 df-ress 16230 df-plusg 16318 df-mulr 16319 df-sca 16321 df-vsca 16322 df-0g 16455 df-mre 16599 df-mrc 16600 df-acs 16602 df-proset 17281 df-poset 17299 df-plt 17311 df-lub 17327 df-glb 17328 df-join 17329 df-meet 17330 df-p0 17392 df-p1 17393 df-lat 17399 df-clat 17461 df-mgm 17595 df-sgrp 17637 df-mnd 17648 df-submnd 17689 df-grp 17779 df-minusg 17780 df-sbg 17781 df-subg 17942 df-cntz 18100 df-oppg 18126 df-lsm 18402 df-cmn 18548 df-abl 18549 df-mgp 18844 df-ur 18856 df-ring 18903 df-oppr 18977 df-dvdsr 18995 df-unit 18996 df-invr 19026 df-dvr 19037 df-drng 19105 df-lmod 19221 df-lss 19289 df-lsp 19331 df-lvec 19462 df-lsatoms 35051 df-lshyp 35052 df-lcv 35094 df-lfl 35133 df-lkr 35161 df-ldual 35199 df-oposet 35251 df-ol 35253 df-oml 35254 df-covers 35341 df-ats 35342 df-atl 35373 df-cvlat 35397 df-hlat 35426 df-llines 35573 df-lplanes 35574 df-lvols 35575 df-lines 35576 df-psubsp 35578 df-pmap 35579 df-padd 35871 df-lhyp 36063 df-laut 36064 df-ldil 36179 df-ltrn 36180 df-trl 36234 df-tgrp 36818 df-tendo 36830 df-edring 36832 df-dveca 37078 df-disoa 37104 df-dvech 37154 df-dib 37214 df-dic 37248 df-dih 37304 df-doch 37423 df-djh 37470 df-lcdual 37662 df-mapd 37700 df-hvmap 37832 df-hdmap1 37868 df-hdmap 37869 |
This theorem is referenced by: hdmap14lem2a 37942 hdmap14lem1 37943 |
Copyright terms: Public domain | W3C validator |