MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsexpg Structured version   Visualization version   GIF version

Theorem pwsexpg 20132
Description: Value of a group exponentiation in a structure power. Compare pwsmulg 18993. (Contributed by SN, 30-Jul-2024.)
Hypotheses
Ref Expression
pwsexpg.y 𝑌 = (𝑅s 𝐼)
pwsexpg.b 𝐵 = (Base‘𝑌)
pwsexpg.m 𝑀 = (mulGrp‘𝑌)
pwsexpg.t 𝑇 = (mulGrp‘𝑅)
pwsexpg.s = (.g𝑀)
pwsexpg.g · = (.g𝑇)
pwsexpg.r (𝜑𝑅 ∈ Ring)
pwsexpg.i (𝜑𝐼𝑉)
pwsexpg.n (𝜑𝑁 ∈ ℕ0)
pwsexpg.x (𝜑𝑋𝐵)
pwsexpg.a (𝜑𝐴𝐼)
Assertion
Ref Expression
pwsexpg (𝜑 → ((𝑁 𝑋)‘𝐴) = (𝑁 · (𝑋𝐴)))

Proof of Theorem pwsexpg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pwsexpg.y . . . 4 𝑌 = (𝑅s 𝐼)
2 pwsexpg.b . . . 4 𝐵 = (Base‘𝑌)
3 pwsexpg.m . . . 4 𝑀 = (mulGrp‘𝑌)
4 pwsexpg.t . . . 4 𝑇 = (mulGrp‘𝑅)
5 pwsexpg.r . . . 4 (𝜑𝑅 ∈ Ring)
6 pwsexpg.i . . . 4 (𝜑𝐼𝑉)
7 pwsexpg.a . . . 4 (𝜑𝐴𝐼)
81, 2, 3, 4, 5, 6, 7pwspjmhmmgpd 20131 . . 3 (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑀 MndHom 𝑇))
9 pwsexpg.n . . 3 (𝜑𝑁 ∈ ℕ0)
10 pwsexpg.x . . 3 (𝜑𝑋𝐵)
113, 2mgpbas 19985 . . . 4 𝐵 = (Base‘𝑀)
12 pwsexpg.s . . . 4 = (.g𝑀)
13 pwsexpg.g . . . 4 · = (.g𝑇)
1411, 12, 13mhmmulg 18989 . . 3 (((𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑀 MndHom 𝑇) ∧ 𝑁 ∈ ℕ0𝑋𝐵) → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑁 𝑋)) = (𝑁 · ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑋)))
158, 9, 10, 14syl3anc 1372 . 2 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑁 𝑋)) = (𝑁 · ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑋)))
161pwsring 20127 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑌 ∈ Ring)
175, 6, 16syl2anc 585 . . . . 5 (𝜑𝑌 ∈ Ring)
183ringmgp 20053 . . . . 5 (𝑌 ∈ Ring → 𝑀 ∈ Mnd)
1917, 18syl 17 . . . 4 (𝜑𝑀 ∈ Mnd)
2011, 12, 19, 9, 10mulgnn0cld 18969 . . 3 (𝜑 → (𝑁 𝑋) ∈ 𝐵)
21 fveq1 6887 . . . 4 (𝑥 = (𝑁 𝑋) → (𝑥𝐴) = ((𝑁 𝑋)‘𝐴))
22 eqid 2733 . . . 4 (𝑥𝐵 ↦ (𝑥𝐴)) = (𝑥𝐵 ↦ (𝑥𝐴))
23 fvex 6901 . . . 4 ((𝑁 𝑋)‘𝐴) ∈ V
2421, 22, 23fvmpt 6994 . . 3 ((𝑁 𝑋) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑁 𝑋)) = ((𝑁 𝑋)‘𝐴))
2520, 24syl 17 . 2 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑁 𝑋)) = ((𝑁 𝑋)‘𝐴))
26 fveq1 6887 . . . . 5 (𝑥 = 𝑋 → (𝑥𝐴) = (𝑋𝐴))
27 fvex 6901 . . . . 5 (𝑋𝐴) ∈ V
2826, 22, 27fvmpt 6994 . . . 4 (𝑋𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑋) = (𝑋𝐴))
2910, 28syl 17 . . 3 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑋) = (𝑋𝐴))
3029oveq2d 7420 . 2 (𝜑 → (𝑁 · ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑋)) = (𝑁 · (𝑋𝐴)))
3115, 25, 303eqtr3d 2781 1 (𝜑 → ((𝑁 𝑋)‘𝐴) = (𝑁 · (𝑋𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  cmpt 5230  cfv 6540  (class class class)co 7404  0cn0 12468  Basecbs 17140  s cpws 17388  Mndcmnd 18621   MndHom cmhm 18665  .gcmg 18944  mulGrpcmgp 19979  Ringcrg 20047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7665  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-seq 13963  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-hom 17217  df-cco 17218  df-0g 17383  df-prds 17389  df-pws 17391  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-grp 18818  df-minusg 18819  df-mulg 18945  df-mgp 19980  df-ur 19997  df-ring 20049
This theorem is referenced by:  evls1expd  32594  evlsvvval  41085  evlsexpval  41089
  Copyright terms: Public domain W3C validator