Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pwsexpg | Structured version Visualization version GIF version |
Description: Value of a group exponentiation in a structure power. Compare pwsmulg 18340. (Contributed by SN, 30-Jul-2024.) |
Ref | Expression |
---|---|
pwsexpg.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
pwsexpg.b | ⊢ 𝐵 = (Base‘𝑌) |
pwsexpg.m | ⊢ 𝑀 = (mulGrp‘𝑌) |
pwsexpg.t | ⊢ 𝑇 = (mulGrp‘𝑅) |
pwsexpg.s | ⊢ ∙ = (.g‘𝑀) |
pwsexpg.g | ⊢ · = (.g‘𝑇) |
pwsexpg.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
pwsexpg.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
pwsexpg.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
pwsexpg.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
pwsexpg.a | ⊢ (𝜑 → 𝐴 ∈ 𝐼) |
Ref | Expression |
---|---|
pwsexpg | ⊢ (𝜑 → ((𝑁 ∙ 𝑋)‘𝐴) = (𝑁 · (𝑋‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwsexpg.y | . . . 4 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
2 | pwsexpg.b | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
3 | pwsexpg.m | . . . 4 ⊢ 𝑀 = (mulGrp‘𝑌) | |
4 | pwsexpg.t | . . . 4 ⊢ 𝑇 = (mulGrp‘𝑅) | |
5 | pwsexpg.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
6 | pwsexpg.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
7 | pwsexpg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐼) | |
8 | 1, 2, 3, 4, 5, 6, 7 | pwspjmhmmgpd 39775 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) ∈ (𝑀 MndHom 𝑇)) |
9 | pwsexpg.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
10 | pwsexpg.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
11 | 3, 2 | mgpbas 19314 | . . . 4 ⊢ 𝐵 = (Base‘𝑀) |
12 | pwsexpg.s | . . . 4 ⊢ ∙ = (.g‘𝑀) | |
13 | pwsexpg.g | . . . 4 ⊢ · = (.g‘𝑇) | |
14 | 11, 12, 13 | mhmmulg 18336 | . . 3 ⊢ (((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) ∈ (𝑀 MndHom 𝑇) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑁 ∙ 𝑋)) = (𝑁 · ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑋))) |
15 | 8, 9, 10, 14 | syl3anc 1369 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑁 ∙ 𝑋)) = (𝑁 · ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑋))) |
16 | 1 | pwsring 19437 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝑌 ∈ Ring) |
17 | 5, 6, 16 | syl2anc 588 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ Ring) |
18 | 3 | ringmgp 19372 | . . . . 5 ⊢ (𝑌 ∈ Ring → 𝑀 ∈ Mnd) |
19 | 17, 18 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Mnd) |
20 | 11, 12 | mulgnn0cl 18312 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 ∙ 𝑋) ∈ 𝐵) |
21 | 19, 9, 10, 20 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (𝑁 ∙ 𝑋) ∈ 𝐵) |
22 | fveq1 6658 | . . . 4 ⊢ (𝑥 = (𝑁 ∙ 𝑋) → (𝑥‘𝐴) = ((𝑁 ∙ 𝑋)‘𝐴)) | |
23 | eqid 2759 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) = (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) | |
24 | fvex 6672 | . . . 4 ⊢ ((𝑁 ∙ 𝑋)‘𝐴) ∈ V | |
25 | 22, 23, 24 | fvmpt 6760 | . . 3 ⊢ ((𝑁 ∙ 𝑋) ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑁 ∙ 𝑋)) = ((𝑁 ∙ 𝑋)‘𝐴)) |
26 | 21, 25 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑁 ∙ 𝑋)) = ((𝑁 ∙ 𝑋)‘𝐴)) |
27 | fveq1 6658 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥‘𝐴) = (𝑋‘𝐴)) | |
28 | fvex 6672 | . . . . 5 ⊢ (𝑋‘𝐴) ∈ V | |
29 | 27, 23, 28 | fvmpt 6760 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑋) = (𝑋‘𝐴)) |
30 | 10, 29 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑋) = (𝑋‘𝐴)) |
31 | 30 | oveq2d 7167 | . 2 ⊢ (𝜑 → (𝑁 · ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑋)) = (𝑁 · (𝑋‘𝐴))) |
32 | 15, 26, 31 | 3eqtr3d 2802 | 1 ⊢ (𝜑 → ((𝑁 ∙ 𝑋)‘𝐴) = (𝑁 · (𝑋‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2112 ↦ cmpt 5113 ‘cfv 6336 (class class class)co 7151 ℕ0cn0 11935 Basecbs 16542 ↑s cpws 16779 Mndcmnd 17978 MndHom cmhm 18021 .gcmg 18292 mulGrpcmgp 19308 Ringcrg 19366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-of 7406 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-er 8300 df-map 8419 df-ixp 8481 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-sup 8940 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-nn 11676 df-2 11738 df-3 11739 df-4 11740 df-5 11741 df-6 11742 df-7 11743 df-8 11744 df-9 11745 df-n0 11936 df-z 12022 df-dec 12139 df-uz 12284 df-fz 12941 df-seq 13420 df-struct 16544 df-ndx 16545 df-slot 16546 df-base 16548 df-sets 16549 df-plusg 16637 df-mulr 16638 df-sca 16640 df-vsca 16641 df-ip 16642 df-tset 16643 df-ple 16644 df-ds 16646 df-hom 16648 df-cco 16649 df-0g 16774 df-prds 16780 df-pws 16782 df-mgm 17919 df-sgrp 17968 df-mnd 17979 df-mhm 18023 df-grp 18173 df-minusg 18174 df-mulg 18293 df-mgp 19309 df-ur 19321 df-ring 19368 |
This theorem is referenced by: evlsbagval 39781 evlsexpval 39782 |
Copyright terms: Public domain | W3C validator |