MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsexpg Structured version   Visualization version   GIF version

Theorem pwsexpg 20238
Description: Value of a group exponentiation in a structure power. Compare pwsmulg 19051. (Contributed by SN, 30-Jul-2024.)
Hypotheses
Ref Expression
pwsexpg.y 𝑌 = (𝑅s 𝐼)
pwsexpg.b 𝐵 = (Base‘𝑌)
pwsexpg.m 𝑀 = (mulGrp‘𝑌)
pwsexpg.t 𝑇 = (mulGrp‘𝑅)
pwsexpg.s = (.g𝑀)
pwsexpg.g · = (.g𝑇)
pwsexpg.r (𝜑𝑅 ∈ Ring)
pwsexpg.i (𝜑𝐼𝑉)
pwsexpg.n (𝜑𝑁 ∈ ℕ0)
pwsexpg.x (𝜑𝑋𝐵)
pwsexpg.a (𝜑𝐴𝐼)
Assertion
Ref Expression
pwsexpg (𝜑 → ((𝑁 𝑋)‘𝐴) = (𝑁 · (𝑋𝐴)))

Proof of Theorem pwsexpg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pwsexpg.y . . . 4 𝑌 = (𝑅s 𝐼)
2 pwsexpg.b . . . 4 𝐵 = (Base‘𝑌)
3 pwsexpg.m . . . 4 𝑀 = (mulGrp‘𝑌)
4 pwsexpg.t . . . 4 𝑇 = (mulGrp‘𝑅)
5 pwsexpg.r . . . 4 (𝜑𝑅 ∈ Ring)
6 pwsexpg.i . . . 4 (𝜑𝐼𝑉)
7 pwsexpg.a . . . 4 (𝜑𝐴𝐼)
81, 2, 3, 4, 5, 6, 7pwspjmhmmgpd 20237 . . 3 (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑀 MndHom 𝑇))
9 pwsexpg.n . . 3 (𝜑𝑁 ∈ ℕ0)
10 pwsexpg.x . . 3 (𝜑𝑋𝐵)
113, 2mgpbas 20054 . . . 4 𝐵 = (Base‘𝑀)
12 pwsexpg.s . . . 4 = (.g𝑀)
13 pwsexpg.g . . . 4 · = (.g𝑇)
1411, 12, 13mhmmulg 19047 . . 3 (((𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑀 MndHom 𝑇) ∧ 𝑁 ∈ ℕ0𝑋𝐵) → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑁 𝑋)) = (𝑁 · ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑋)))
158, 9, 10, 14syl3anc 1373 . 2 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑁 𝑋)) = (𝑁 · ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑋)))
161pwsring 20233 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑌 ∈ Ring)
175, 6, 16syl2anc 584 . . . . 5 (𝜑𝑌 ∈ Ring)
183ringmgp 20148 . . . . 5 (𝑌 ∈ Ring → 𝑀 ∈ Mnd)
1917, 18syl 17 . . . 4 (𝜑𝑀 ∈ Mnd)
2011, 12, 19, 9, 10mulgnn0cld 19027 . . 3 (𝜑 → (𝑁 𝑋) ∈ 𝐵)
21 fveq1 6857 . . . 4 (𝑥 = (𝑁 𝑋) → (𝑥𝐴) = ((𝑁 𝑋)‘𝐴))
22 eqid 2729 . . . 4 (𝑥𝐵 ↦ (𝑥𝐴)) = (𝑥𝐵 ↦ (𝑥𝐴))
23 fvex 6871 . . . 4 ((𝑁 𝑋)‘𝐴) ∈ V
2421, 22, 23fvmpt 6968 . . 3 ((𝑁 𝑋) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑁 𝑋)) = ((𝑁 𝑋)‘𝐴))
2520, 24syl 17 . 2 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑁 𝑋)) = ((𝑁 𝑋)‘𝐴))
26 fveq1 6857 . . . . 5 (𝑥 = 𝑋 → (𝑥𝐴) = (𝑋𝐴))
27 fvex 6871 . . . . 5 (𝑋𝐴) ∈ V
2826, 22, 27fvmpt 6968 . . . 4 (𝑋𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑋) = (𝑋𝐴))
2910, 28syl 17 . . 3 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑋) = (𝑋𝐴))
3029oveq2d 7403 . 2 (𝜑 → (𝑁 · ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑋)) = (𝑁 · (𝑋𝐴)))
3115, 25, 303eqtr3d 2772 1 (𝜑 → ((𝑁 𝑋)‘𝐴) = (𝑁 · (𝑋𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cmpt 5188  cfv 6511  (class class class)co 7387  0cn0 12442  Basecbs 17179  s cpws 17409  Mndcmnd 18661   MndHom cmhm 18708  .gcmg 18999  mulGrpcmgp 20049  Ringcrg 20142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-seq 13967  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-prds 17410  df-pws 17412  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-grp 18868  df-minusg 18869  df-mulg 19000  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144
This theorem is referenced by:  evls1expd  22254  evlsvvval  42551  evlsexpval  42555
  Copyright terms: Public domain W3C validator