| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwsexpg | Structured version Visualization version GIF version | ||
| Description: Value of a group exponentiation in a structure power. Compare pwsmulg 19051. (Contributed by SN, 30-Jul-2024.) |
| Ref | Expression |
|---|---|
| pwsexpg.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
| pwsexpg.b | ⊢ 𝐵 = (Base‘𝑌) |
| pwsexpg.m | ⊢ 𝑀 = (mulGrp‘𝑌) |
| pwsexpg.t | ⊢ 𝑇 = (mulGrp‘𝑅) |
| pwsexpg.s | ⊢ ∙ = (.g‘𝑀) |
| pwsexpg.g | ⊢ · = (.g‘𝑇) |
| pwsexpg.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| pwsexpg.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| pwsexpg.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| pwsexpg.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| pwsexpg.a | ⊢ (𝜑 → 𝐴 ∈ 𝐼) |
| Ref | Expression |
|---|---|
| pwsexpg | ⊢ (𝜑 → ((𝑁 ∙ 𝑋)‘𝐴) = (𝑁 · (𝑋‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsexpg.y | . . . 4 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
| 2 | pwsexpg.b | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
| 3 | pwsexpg.m | . . . 4 ⊢ 𝑀 = (mulGrp‘𝑌) | |
| 4 | pwsexpg.t | . . . 4 ⊢ 𝑇 = (mulGrp‘𝑅) | |
| 5 | pwsexpg.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 6 | pwsexpg.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 7 | pwsexpg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐼) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | pwspjmhmmgpd 20237 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) ∈ (𝑀 MndHom 𝑇)) |
| 9 | pwsexpg.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 10 | pwsexpg.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 11 | 3, 2 | mgpbas 20054 | . . . 4 ⊢ 𝐵 = (Base‘𝑀) |
| 12 | pwsexpg.s | . . . 4 ⊢ ∙ = (.g‘𝑀) | |
| 13 | pwsexpg.g | . . . 4 ⊢ · = (.g‘𝑇) | |
| 14 | 11, 12, 13 | mhmmulg 19047 | . . 3 ⊢ (((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) ∈ (𝑀 MndHom 𝑇) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑁 ∙ 𝑋)) = (𝑁 · ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑋))) |
| 15 | 8, 9, 10, 14 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑁 ∙ 𝑋)) = (𝑁 · ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑋))) |
| 16 | 1 | pwsring 20233 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝑌 ∈ Ring) |
| 17 | 5, 6, 16 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ Ring) |
| 18 | 3 | ringmgp 20148 | . . . . 5 ⊢ (𝑌 ∈ Ring → 𝑀 ∈ Mnd) |
| 19 | 17, 18 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Mnd) |
| 20 | 11, 12, 19, 9, 10 | mulgnn0cld 19027 | . . 3 ⊢ (𝜑 → (𝑁 ∙ 𝑋) ∈ 𝐵) |
| 21 | fveq1 6857 | . . . 4 ⊢ (𝑥 = (𝑁 ∙ 𝑋) → (𝑥‘𝐴) = ((𝑁 ∙ 𝑋)‘𝐴)) | |
| 22 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) = (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) | |
| 23 | fvex 6871 | . . . 4 ⊢ ((𝑁 ∙ 𝑋)‘𝐴) ∈ V | |
| 24 | 21, 22, 23 | fvmpt 6968 | . . 3 ⊢ ((𝑁 ∙ 𝑋) ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑁 ∙ 𝑋)) = ((𝑁 ∙ 𝑋)‘𝐴)) |
| 25 | 20, 24 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑁 ∙ 𝑋)) = ((𝑁 ∙ 𝑋)‘𝐴)) |
| 26 | fveq1 6857 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥‘𝐴) = (𝑋‘𝐴)) | |
| 27 | fvex 6871 | . . . . 5 ⊢ (𝑋‘𝐴) ∈ V | |
| 28 | 26, 22, 27 | fvmpt 6968 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑋) = (𝑋‘𝐴)) |
| 29 | 10, 28 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑋) = (𝑋‘𝐴)) |
| 30 | 29 | oveq2d 7403 | . 2 ⊢ (𝜑 → (𝑁 · ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑋)) = (𝑁 · (𝑋‘𝐴))) |
| 31 | 15, 25, 30 | 3eqtr3d 2772 | 1 ⊢ (𝜑 → ((𝑁 ∙ 𝑋)‘𝐴) = (𝑁 · (𝑋‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 ℕ0cn0 12442 Basecbs 17179 ↑s cpws 17409 Mndcmnd 18661 MndHom cmhm 18708 .gcmg 18999 mulGrpcmgp 20049 Ringcrg 20142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-seq 13967 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-prds 17410 df-pws 17412 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-grp 18868 df-minusg 18869 df-mulg 19000 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 |
| This theorem is referenced by: evls1expd 22254 evlsvvval 42551 evlsexpval 42555 |
| Copyright terms: Public domain | W3C validator |