MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsexpg Structured version   Visualization version   GIF version

Theorem pwsexpg 20249
Description: Value of a group exponentiation in a structure power. Compare pwsmulg 19033. (Contributed by SN, 30-Jul-2024.)
Hypotheses
Ref Expression
pwsexpg.y 𝑌 = (𝑅s 𝐼)
pwsexpg.b 𝐵 = (Base‘𝑌)
pwsexpg.m 𝑀 = (mulGrp‘𝑌)
pwsexpg.t 𝑇 = (mulGrp‘𝑅)
pwsexpg.s = (.g𝑀)
pwsexpg.g · = (.g𝑇)
pwsexpg.r (𝜑𝑅 ∈ Ring)
pwsexpg.i (𝜑𝐼𝑉)
pwsexpg.n (𝜑𝑁 ∈ ℕ0)
pwsexpg.x (𝜑𝑋𝐵)
pwsexpg.a (𝜑𝐴𝐼)
Assertion
Ref Expression
pwsexpg (𝜑 → ((𝑁 𝑋)‘𝐴) = (𝑁 · (𝑋𝐴)))

Proof of Theorem pwsexpg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pwsexpg.y . . . 4 𝑌 = (𝑅s 𝐼)
2 pwsexpg.b . . . 4 𝐵 = (Base‘𝑌)
3 pwsexpg.m . . . 4 𝑀 = (mulGrp‘𝑌)
4 pwsexpg.t . . . 4 𝑇 = (mulGrp‘𝑅)
5 pwsexpg.r . . . 4 (𝜑𝑅 ∈ Ring)
6 pwsexpg.i . . . 4 (𝜑𝐼𝑉)
7 pwsexpg.a . . . 4 (𝜑𝐴𝐼)
81, 2, 3, 4, 5, 6, 7pwspjmhmmgpd 20248 . . 3 (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑀 MndHom 𝑇))
9 pwsexpg.n . . 3 (𝜑𝑁 ∈ ℕ0)
10 pwsexpg.x . . 3 (𝜑𝑋𝐵)
113, 2mgpbas 20065 . . . 4 𝐵 = (Base‘𝑀)
12 pwsexpg.s . . . 4 = (.g𝑀)
13 pwsexpg.g . . . 4 · = (.g𝑇)
1411, 12, 13mhmmulg 19029 . . 3 (((𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑀 MndHom 𝑇) ∧ 𝑁 ∈ ℕ0𝑋𝐵) → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑁 𝑋)) = (𝑁 · ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑋)))
158, 9, 10, 14syl3anc 1373 . 2 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑁 𝑋)) = (𝑁 · ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑋)))
161pwsring 20244 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑌 ∈ Ring)
175, 6, 16syl2anc 584 . . . . 5 (𝜑𝑌 ∈ Ring)
183ringmgp 20159 . . . . 5 (𝑌 ∈ Ring → 𝑀 ∈ Mnd)
1917, 18syl 17 . . . 4 (𝜑𝑀 ∈ Mnd)
2011, 12, 19, 9, 10mulgnn0cld 19009 . . 3 (𝜑 → (𝑁 𝑋) ∈ 𝐵)
21 fveq1 6839 . . . 4 (𝑥 = (𝑁 𝑋) → (𝑥𝐴) = ((𝑁 𝑋)‘𝐴))
22 eqid 2729 . . . 4 (𝑥𝐵 ↦ (𝑥𝐴)) = (𝑥𝐵 ↦ (𝑥𝐴))
23 fvex 6853 . . . 4 ((𝑁 𝑋)‘𝐴) ∈ V
2421, 22, 23fvmpt 6950 . . 3 ((𝑁 𝑋) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑁 𝑋)) = ((𝑁 𝑋)‘𝐴))
2520, 24syl 17 . 2 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑁 𝑋)) = ((𝑁 𝑋)‘𝐴))
26 fveq1 6839 . . . . 5 (𝑥 = 𝑋 → (𝑥𝐴) = (𝑋𝐴))
27 fvex 6853 . . . . 5 (𝑋𝐴) ∈ V
2826, 22, 27fvmpt 6950 . . . 4 (𝑋𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑋) = (𝑋𝐴))
2910, 28syl 17 . . 3 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑋) = (𝑋𝐴))
3029oveq2d 7385 . 2 (𝜑 → (𝑁 · ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑋)) = (𝑁 · (𝑋𝐴)))
3115, 25, 303eqtr3d 2772 1 (𝜑 → ((𝑁 𝑋)‘𝐴) = (𝑁 · (𝑋𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cmpt 5183  cfv 6499  (class class class)co 7369  0cn0 12418  Basecbs 17155  s cpws 17385  Mndcmnd 18643   MndHom cmhm 18690  .gcmg 18981  mulGrpcmgp 20060  Ringcrg 20153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-seq 13943  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17380  df-prds 17386  df-pws 17388  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-grp 18850  df-minusg 18851  df-mulg 18982  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155
This theorem is referenced by:  evls1expd  22287  evlsvvval  42544  evlsexpval  42548
  Copyright terms: Public domain W3C validator