Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pwsexpg | Structured version Visualization version GIF version |
Description: Value of a group exponentiation in a structure power. Compare pwsmulg 18663. (Contributed by SN, 30-Jul-2024.) |
Ref | Expression |
---|---|
pwsexpg.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
pwsexpg.b | ⊢ 𝐵 = (Base‘𝑌) |
pwsexpg.m | ⊢ 𝑀 = (mulGrp‘𝑌) |
pwsexpg.t | ⊢ 𝑇 = (mulGrp‘𝑅) |
pwsexpg.s | ⊢ ∙ = (.g‘𝑀) |
pwsexpg.g | ⊢ · = (.g‘𝑇) |
pwsexpg.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
pwsexpg.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
pwsexpg.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
pwsexpg.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
pwsexpg.a | ⊢ (𝜑 → 𝐴 ∈ 𝐼) |
Ref | Expression |
---|---|
pwsexpg | ⊢ (𝜑 → ((𝑁 ∙ 𝑋)‘𝐴) = (𝑁 · (𝑋‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwsexpg.y | . . . 4 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
2 | pwsexpg.b | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
3 | pwsexpg.m | . . . 4 ⊢ 𝑀 = (mulGrp‘𝑌) | |
4 | pwsexpg.t | . . . 4 ⊢ 𝑇 = (mulGrp‘𝑅) | |
5 | pwsexpg.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
6 | pwsexpg.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
7 | pwsexpg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐼) | |
8 | 1, 2, 3, 4, 5, 6, 7 | pwspjmhmmgpd 40192 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) ∈ (𝑀 MndHom 𝑇)) |
9 | pwsexpg.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
10 | pwsexpg.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
11 | 3, 2 | mgpbas 19641 | . . . 4 ⊢ 𝐵 = (Base‘𝑀) |
12 | pwsexpg.s | . . . 4 ⊢ ∙ = (.g‘𝑀) | |
13 | pwsexpg.g | . . . 4 ⊢ · = (.g‘𝑇) | |
14 | 11, 12, 13 | mhmmulg 18659 | . . 3 ⊢ (((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) ∈ (𝑀 MndHom 𝑇) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑁 ∙ 𝑋)) = (𝑁 · ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑋))) |
15 | 8, 9, 10, 14 | syl3anc 1369 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑁 ∙ 𝑋)) = (𝑁 · ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑋))) |
16 | 1 | pwsring 19769 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝑌 ∈ Ring) |
17 | 5, 6, 16 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ Ring) |
18 | 3 | ringmgp 19704 | . . . . 5 ⊢ (𝑌 ∈ Ring → 𝑀 ∈ Mnd) |
19 | 17, 18 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Mnd) |
20 | 11, 12 | mulgnn0cl 18635 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 ∙ 𝑋) ∈ 𝐵) |
21 | 19, 9, 10, 20 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (𝑁 ∙ 𝑋) ∈ 𝐵) |
22 | fveq1 6755 | . . . 4 ⊢ (𝑥 = (𝑁 ∙ 𝑋) → (𝑥‘𝐴) = ((𝑁 ∙ 𝑋)‘𝐴)) | |
23 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) = (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) | |
24 | fvex 6769 | . . . 4 ⊢ ((𝑁 ∙ 𝑋)‘𝐴) ∈ V | |
25 | 22, 23, 24 | fvmpt 6857 | . . 3 ⊢ ((𝑁 ∙ 𝑋) ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑁 ∙ 𝑋)) = ((𝑁 ∙ 𝑋)‘𝐴)) |
26 | 21, 25 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑁 ∙ 𝑋)) = ((𝑁 ∙ 𝑋)‘𝐴)) |
27 | fveq1 6755 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥‘𝐴) = (𝑋‘𝐴)) | |
28 | fvex 6769 | . . . . 5 ⊢ (𝑋‘𝐴) ∈ V | |
29 | 27, 23, 28 | fvmpt 6857 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑋) = (𝑋‘𝐴)) |
30 | 10, 29 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑋) = (𝑋‘𝐴)) |
31 | 30 | oveq2d 7271 | . 2 ⊢ (𝜑 → (𝑁 · ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑋)) = (𝑁 · (𝑋‘𝐴))) |
32 | 15, 26, 31 | 3eqtr3d 2786 | 1 ⊢ (𝜑 → ((𝑁 ∙ 𝑋)‘𝐴) = (𝑁 · (𝑋‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 ℕ0cn0 12163 Basecbs 16840 ↑s cpws 17074 Mndcmnd 18300 MndHom cmhm 18343 .gcmg 18615 mulGrpcmgp 19635 Ringcrg 19698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-seq 13650 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-0g 17069 df-prds 17075 df-pws 17077 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-grp 18495 df-minusg 18496 df-mulg 18616 df-mgp 19636 df-ur 19653 df-ring 19700 |
This theorem is referenced by: evlsbagval 40198 evlsexpval 40199 |
Copyright terms: Public domain | W3C validator |