MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1pw Structured version   Visualization version   GIF version

Theorem evls1pw 22241
Description: Univariate polynomial evaluation for subrings maps the exponentiation of a polynomial to the exponentiation of the evaluated polynomial. (Contributed by SN, 29-Feb-2024.)
Hypotheses
Ref Expression
evls1pw.q 𝑄 = (𝑆 evalSub1 𝑅)
evls1pw.u 𝑈 = (𝑆s 𝑅)
evls1pw.w 𝑊 = (Poly1𝑈)
evls1pw.g 𝐺 = (mulGrp‘𝑊)
evls1pw.k 𝐾 = (Base‘𝑆)
evls1pw.b 𝐵 = (Base‘𝑊)
evls1pw.e = (.g𝐺)
evls1pw.s (𝜑𝑆 ∈ CRing)
evls1pw.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evls1pw.n (𝜑𝑁 ∈ ℕ0)
evls1pw.x (𝜑𝑋𝐵)
Assertion
Ref Expression
evls1pw (𝜑 → (𝑄‘(𝑁 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑆s 𝐾)))(𝑄𝑋)))

Proof of Theorem evls1pw
StepHypRef Expression
1 evls1pw.s . . . 4 (𝜑𝑆 ∈ CRing)
2 evls1pw.r . . . 4 (𝜑𝑅 ∈ (SubRing‘𝑆))
3 evls1pw.q . . . . 5 𝑄 = (𝑆 evalSub1 𝑅)
4 evls1pw.k . . . . 5 𝐾 = (Base‘𝑆)
5 eqid 2731 . . . . 5 (𝑆s 𝐾) = (𝑆s 𝐾)
6 evls1pw.u . . . . 5 𝑈 = (𝑆s 𝑅)
7 evls1pw.w . . . . 5 𝑊 = (Poly1𝑈)
83, 4, 5, 6, 7evls1rhm 22237 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom (𝑆s 𝐾)))
91, 2, 8syl2anc 584 . . 3 (𝜑𝑄 ∈ (𝑊 RingHom (𝑆s 𝐾)))
10 evls1pw.g . . . 4 𝐺 = (mulGrp‘𝑊)
11 eqid 2731 . . . 4 (mulGrp‘(𝑆s 𝐾)) = (mulGrp‘(𝑆s 𝐾))
1210, 11rhmmhm 20397 . . 3 (𝑄 ∈ (𝑊 RingHom (𝑆s 𝐾)) → 𝑄 ∈ (𝐺 MndHom (mulGrp‘(𝑆s 𝐾))))
139, 12syl 17 . 2 (𝜑𝑄 ∈ (𝐺 MndHom (mulGrp‘(𝑆s 𝐾))))
14 evls1pw.n . 2 (𝜑𝑁 ∈ ℕ0)
15 evls1pw.x . 2 (𝜑𝑋𝐵)
16 evls1pw.b . . . 4 𝐵 = (Base‘𝑊)
1710, 16mgpbas 20063 . . 3 𝐵 = (Base‘𝐺)
18 evls1pw.e . . 3 = (.g𝐺)
19 eqid 2731 . . 3 (.g‘(mulGrp‘(𝑆s 𝐾))) = (.g‘(mulGrp‘(𝑆s 𝐾)))
2017, 18, 19mhmmulg 19028 . 2 ((𝑄 ∈ (𝐺 MndHom (mulGrp‘(𝑆s 𝐾))) ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝑄‘(𝑁 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑆s 𝐾)))(𝑄𝑋)))
2113, 14, 15, 20syl3anc 1373 1 (𝜑 → (𝑄‘(𝑁 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑆s 𝐾)))(𝑄𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  0cn0 12381  Basecbs 17120  s cress 17141  s cpws 17350   MndHom cmhm 18689  .gcmg 18980  mulGrpcmgp 20058  CRingccrg 20152   RingHom crh 20387  SubRingcsubrg 20484  Poly1cpl1 22089   evalSub1 ces1 22228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-srg 20105  df-ring 20153  df-cring 20154  df-rhm 20390  df-subrng 20461  df-subrg 20485  df-lmod 20795  df-lss 20865  df-lsp 20905  df-assa 21790  df-asp 21791  df-ascl 21792  df-psr 21846  df-mvr 21847  df-mpl 21848  df-opsr 21850  df-evls 22009  df-psr1 22092  df-ply1 22094  df-evls1 22230
This theorem is referenced by:  evls1varpw  22242  evls1expd  22282
  Copyright terms: Public domain W3C validator