MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1pw Structured version   Visualization version   GIF version

Theorem evls1pw 22238
Description: Univariate polynomial evaluation for subrings maps the exponentiation of a polynomial to the exponentiation of the evaluated polynomial. (Contributed by SN, 29-Feb-2024.)
Hypotheses
Ref Expression
evls1pw.q 𝑄 = (𝑆 evalSub1 𝑅)
evls1pw.u 𝑈 = (𝑆s 𝑅)
evls1pw.w 𝑊 = (Poly1𝑈)
evls1pw.g 𝐺 = (mulGrp‘𝑊)
evls1pw.k 𝐾 = (Base‘𝑆)
evls1pw.b 𝐵 = (Base‘𝑊)
evls1pw.e = (.g𝐺)
evls1pw.s (𝜑𝑆 ∈ CRing)
evls1pw.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evls1pw.n (𝜑𝑁 ∈ ℕ0)
evls1pw.x (𝜑𝑋𝐵)
Assertion
Ref Expression
evls1pw (𝜑 → (𝑄‘(𝑁 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑆s 𝐾)))(𝑄𝑋)))

Proof of Theorem evls1pw
StepHypRef Expression
1 evls1pw.s . . . 4 (𝜑𝑆 ∈ CRing)
2 evls1pw.r . . . 4 (𝜑𝑅 ∈ (SubRing‘𝑆))
3 evls1pw.q . . . . 5 𝑄 = (𝑆 evalSub1 𝑅)
4 evls1pw.k . . . . 5 𝐾 = (Base‘𝑆)
5 eqid 2728 . . . . 5 (𝑆s 𝐾) = (𝑆s 𝐾)
6 evls1pw.u . . . . 5 𝑈 = (𝑆s 𝑅)
7 evls1pw.w . . . . 5 𝑊 = (Poly1𝑈)
83, 4, 5, 6, 7evls1rhm 22234 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom (𝑆s 𝐾)))
91, 2, 8syl2anc 583 . . 3 (𝜑𝑄 ∈ (𝑊 RingHom (𝑆s 𝐾)))
10 evls1pw.g . . . 4 𝐺 = (mulGrp‘𝑊)
11 eqid 2728 . . . 4 (mulGrp‘(𝑆s 𝐾)) = (mulGrp‘(𝑆s 𝐾))
1210, 11rhmmhm 20411 . . 3 (𝑄 ∈ (𝑊 RingHom (𝑆s 𝐾)) → 𝑄 ∈ (𝐺 MndHom (mulGrp‘(𝑆s 𝐾))))
139, 12syl 17 . 2 (𝜑𝑄 ∈ (𝐺 MndHom (mulGrp‘(𝑆s 𝐾))))
14 evls1pw.n . 2 (𝜑𝑁 ∈ ℕ0)
15 evls1pw.x . 2 (𝜑𝑋𝐵)
16 evls1pw.b . . . 4 𝐵 = (Base‘𝑊)
1710, 16mgpbas 20073 . . 3 𝐵 = (Base‘𝐺)
18 evls1pw.e . . 3 = (.g𝐺)
19 eqid 2728 . . 3 (.g‘(mulGrp‘(𝑆s 𝐾))) = (.g‘(mulGrp‘(𝑆s 𝐾)))
2017, 18, 19mhmmulg 19063 . 2 ((𝑄 ∈ (𝐺 MndHom (mulGrp‘(𝑆s 𝐾))) ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝑄‘(𝑁 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑆s 𝐾)))(𝑄𝑋)))
2113, 14, 15, 20syl3anc 1369 1 (𝜑 → (𝑄‘(𝑁 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑆s 𝐾)))(𝑄𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  cfv 6542  (class class class)co 7414  0cn0 12496  Basecbs 17173  s cress 17202  s cpws 17421   MndHom cmhm 18731  .gcmg 19016  mulGrpcmgp 20067  CRingccrg 20167   RingHom crh 20401  SubRingcsubrg 20499  Poly1cpl1 22089   evalSub1 ces1 22225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-ofr 7680  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-sup 9459  df-oi 9527  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-fz 13511  df-fzo 13654  df-seq 13993  df-hash 14316  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-hom 17250  df-cco 17251  df-0g 17416  df-gsum 17417  df-prds 17422  df-pws 17424  df-mre 17559  df-mrc 17560  df-acs 17562  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-mhm 18733  df-submnd 18734  df-grp 18886  df-minusg 18887  df-sbg 18888  df-mulg 19017  df-subg 19071  df-ghm 19161  df-cntz 19261  df-cmn 19730  df-abl 19731  df-mgp 20068  df-rng 20086  df-ur 20115  df-srg 20120  df-ring 20168  df-cring 20169  df-rhm 20404  df-subrng 20476  df-subrg 20501  df-lmod 20738  df-lss 20809  df-lsp 20849  df-assa 21780  df-asp 21781  df-ascl 21782  df-psr 21835  df-mvr 21836  df-mpl 21837  df-opsr 21839  df-evls 22011  df-psr1 22092  df-ply1 22094  df-evls1 22227
This theorem is referenced by:  evls1varpw  22239  evls1expd  33233
  Copyright terms: Public domain W3C validator