Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > evls1pw | Structured version Visualization version GIF version |
Description: Univariate polynomial evaluation for subrings maps the exponentiation of a polynomial to the exponentiation of the evaluated polynomial. (Contributed by SN, 29-Feb-2024.) |
Ref | Expression |
---|---|
evls1pw.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
evls1pw.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
evls1pw.w | ⊢ 𝑊 = (Poly1‘𝑈) |
evls1pw.g | ⊢ 𝐺 = (mulGrp‘𝑊) |
evls1pw.k | ⊢ 𝐾 = (Base‘𝑆) |
evls1pw.b | ⊢ 𝐵 = (Base‘𝑊) |
evls1pw.e | ⊢ ↑ = (.g‘𝐺) |
evls1pw.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
evls1pw.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
evls1pw.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
evls1pw.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
evls1pw | ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑆 ↑s 𝐾)))(𝑄‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evls1pw.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
2 | evls1pw.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
3 | evls1pw.q | . . . . 5 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
4 | evls1pw.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑆) | |
5 | eqid 2759 | . . . . 5 ⊢ (𝑆 ↑s 𝐾) = (𝑆 ↑s 𝐾) | |
6 | evls1pw.u | . . . . 5 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
7 | evls1pw.w | . . . . 5 ⊢ 𝑊 = (Poly1‘𝑈) | |
8 | 3, 4, 5, 6, 7 | evls1rhm 21031 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom (𝑆 ↑s 𝐾))) |
9 | 1, 2, 8 | syl2anc 588 | . . 3 ⊢ (𝜑 → 𝑄 ∈ (𝑊 RingHom (𝑆 ↑s 𝐾))) |
10 | evls1pw.g | . . . 4 ⊢ 𝐺 = (mulGrp‘𝑊) | |
11 | eqid 2759 | . . . 4 ⊢ (mulGrp‘(𝑆 ↑s 𝐾)) = (mulGrp‘(𝑆 ↑s 𝐾)) | |
12 | 10, 11 | rhmmhm 19535 | . . 3 ⊢ (𝑄 ∈ (𝑊 RingHom (𝑆 ↑s 𝐾)) → 𝑄 ∈ (𝐺 MndHom (mulGrp‘(𝑆 ↑s 𝐾)))) |
13 | 9, 12 | syl 17 | . 2 ⊢ (𝜑 → 𝑄 ∈ (𝐺 MndHom (mulGrp‘(𝑆 ↑s 𝐾)))) |
14 | evls1pw.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
15 | evls1pw.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
16 | evls1pw.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
17 | 10, 16 | mgpbas 19303 | . . 3 ⊢ 𝐵 = (Base‘𝐺) |
18 | evls1pw.e | . . 3 ⊢ ↑ = (.g‘𝐺) | |
19 | eqid 2759 | . . 3 ⊢ (.g‘(mulGrp‘(𝑆 ↑s 𝐾))) = (.g‘(mulGrp‘(𝑆 ↑s 𝐾))) | |
20 | 17, 18, 19 | mhmmulg 18325 | . 2 ⊢ ((𝑄 ∈ (𝐺 MndHom (mulGrp‘(𝑆 ↑s 𝐾))) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑄‘(𝑁 ↑ 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑆 ↑s 𝐾)))(𝑄‘𝑋))) |
21 | 13, 14, 15, 20 | syl3anc 1369 | 1 ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑆 ↑s 𝐾)))(𝑄‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2112 ‘cfv 6333 (class class class)co 7148 ℕ0cn0 11924 Basecbs 16531 ↾s cress 16532 ↑s cpws 16768 MndHom cmhm 18010 .gcmg 18281 mulGrpcmgp 19297 CRingccrg 19356 RingHom crh 19525 SubRingcsubrg 19589 Poly1cpl1 20891 evalSub1 ces1 21022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 ax-cnex 10621 ax-resscn 10622 ax-1cn 10623 ax-icn 10624 ax-addcl 10625 ax-addrcl 10626 ax-mulcl 10627 ax-mulrcl 10628 ax-mulcom 10629 ax-addass 10630 ax-mulass 10631 ax-distr 10632 ax-i2m1 10633 ax-1ne0 10634 ax-1rid 10635 ax-rnegex 10636 ax-rrecex 10637 ax-cnre 10638 ax-pre-lttri 10639 ax-pre-lttrn 10640 ax-pre-ltadd 10641 ax-pre-mulgt0 10642 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-tp 4525 df-op 4527 df-uni 4797 df-int 4837 df-iun 4883 df-iin 4884 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5428 df-eprel 5433 df-po 5441 df-so 5442 df-fr 5481 df-se 5482 df-we 5483 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-pred 6124 df-ord 6170 df-on 6171 df-lim 6172 df-suc 6173 df-iota 6292 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-isom 6342 df-riota 7106 df-ov 7151 df-oprab 7152 df-mpo 7153 df-of 7403 df-ofr 7404 df-om 7578 df-1st 7691 df-2nd 7692 df-supp 7834 df-wrecs 7955 df-recs 8016 df-rdg 8054 df-1o 8110 df-2o 8111 df-oadd 8114 df-er 8297 df-map 8416 df-pm 8417 df-ixp 8478 df-en 8526 df-dom 8527 df-sdom 8528 df-fin 8529 df-fsupp 8857 df-sup 8929 df-oi 8997 df-card 9391 df-pnf 10705 df-mnf 10706 df-xr 10707 df-ltxr 10708 df-le 10709 df-sub 10900 df-neg 10901 df-nn 11665 df-2 11727 df-3 11728 df-4 11729 df-5 11730 df-6 11731 df-7 11732 df-8 11733 df-9 11734 df-n0 11925 df-z 12011 df-dec 12128 df-uz 12273 df-fz 12930 df-fzo 13073 df-seq 13409 df-hash 13731 df-struct 16533 df-ndx 16534 df-slot 16535 df-base 16537 df-sets 16538 df-ress 16539 df-plusg 16626 df-mulr 16627 df-sca 16629 df-vsca 16630 df-ip 16631 df-tset 16632 df-ple 16633 df-ds 16635 df-hom 16637 df-cco 16638 df-0g 16763 df-gsum 16764 df-prds 16769 df-pws 16771 df-mre 16905 df-mrc 16906 df-acs 16908 df-mgm 17908 df-sgrp 17957 df-mnd 17968 df-mhm 18012 df-submnd 18013 df-grp 18162 df-minusg 18163 df-sbg 18164 df-mulg 18282 df-subg 18333 df-ghm 18413 df-cntz 18504 df-cmn 18965 df-abl 18966 df-mgp 19298 df-ur 19310 df-srg 19314 df-ring 19357 df-cring 19358 df-rnghom 19528 df-subrg 19591 df-lmod 19694 df-lss 19762 df-lsp 19802 df-assa 20608 df-asp 20609 df-ascl 20610 df-psr 20661 df-mvr 20662 df-mpl 20663 df-opsr 20665 df-evls 20825 df-psr1 20894 df-ply1 20896 df-evls1 21024 |
This theorem is referenced by: evls1varpw 21036 |
Copyright terms: Public domain | W3C validator |