Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh8ad Structured version   Visualization version   GIF version

Theorem mapdh8ad 38308
Description: Part of Part (8) in [Baer] p. 48. (Contributed by NM, 13-May-2015.)
Hypotheses
Ref Expression
mapdh8a.h 𝐻 = (LHyp‘𝐾)
mapdh8a.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh8a.v 𝑉 = (Base‘𝑈)
mapdh8a.s = (-g𝑈)
mapdh8a.o 0 = (0g𝑈)
mapdh8a.n 𝑁 = (LSpan‘𝑈)
mapdh8a.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh8a.d 𝐷 = (Base‘𝐶)
mapdh8a.r 𝑅 = (-g𝐶)
mapdh8a.q 𝑄 = (0g𝐶)
mapdh8a.j 𝐽 = (LSpan‘𝐶)
mapdh8a.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh8a.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh8a.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh8ac.f (𝜑𝐹𝐷)
mapdh8ac.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdh8ac.eg (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
mapdh8ac.ee (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
mapdh8ac.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh8ac.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdh8ac.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdh8ac.t (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
mapdh8ac.yn (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑇}))
mapdh8ad.xy (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdh8ad.xz (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
Assertion
Ref Expression
mapdh8ad (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑍, 𝐸, 𝑇⟩))
Distinct variable groups:   𝑥,,   0 ,,𝑥   𝐶,   𝐷,,𝑥   ,𝐹,𝑥   ,𝐼   ,𝐺,𝑥   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑅,,𝑥   𝑥,𝑄   𝑇,,𝑥   𝑈,   ,𝑋,𝑥   ,𝑌,𝑥   ,𝐸,𝑥   ,𝑍,𝑥   𝑥,𝐼   ,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑄()   𝑈(𝑥)   𝐻(𝑥,)   𝐾(𝑥,)   𝑉(𝑥)   𝑊(𝑥,)

Proof of Theorem mapdh8ad
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mapdh8a.h . . 3 𝐻 = (LHyp‘𝐾)
2 mapdh8a.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdh8a.v . . 3 𝑉 = (Base‘𝑈)
4 mapdh8a.n . . 3 𝑁 = (LSpan‘𝑈)
5 mapdh8a.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 mapdh8ac.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
76eldifad 3837 . . 3 (𝜑𝑋𝑉)
8 mapdh8ac.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
98eldifad 3837 . . 3 (𝜑𝑌𝑉)
10 mapdh8ac.z . . . 4 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
1110eldifad 3837 . . 3 (𝜑𝑍𝑉)
121, 2, 3, 4, 5, 7, 9, 11dvh3dim2 37977 . 2 (𝜑 → ∃𝑤𝑉𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})))
13 mapdh8a.s . . . 4 = (-g𝑈)
14 mapdh8a.o . . . 4 0 = (0g𝑈)
15 mapdh8a.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
16 mapdh8a.d . . . 4 𝐷 = (Base‘𝐶)
17 mapdh8a.r . . . 4 𝑅 = (-g𝐶)
18 mapdh8a.q . . . 4 𝑄 = (0g𝐶)
19 mapdh8a.j . . . 4 𝐽 = (LSpan‘𝐶)
20 mapdh8a.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
21 mapdh8a.i . . . 4 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
2253ad2ant1 1113 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
23 mapdh8ac.f . . . . 5 (𝜑𝐹𝐷)
24233ad2ant1 1113 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝐹𝐷)
25 mapdh8ac.mn . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
26253ad2ant1 1113 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
27 mapdh8ac.eg . . . . 5 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
28273ad2ant1 1113 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
29 mapdh8ac.ee . . . . 5 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
30293ad2ant1 1113 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
3163ad2ant1 1113 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
3283ad2ant1 1113 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑌 ∈ (𝑉 ∖ { 0 }))
33103ad2ant1 1113 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑍 ∈ (𝑉 ∖ { 0 }))
34 mapdh8ac.t . . . . 5 (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
35343ad2ant1 1113 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑇 ∈ (𝑉 ∖ { 0 }))
36 mapdh8ac.yn . . . . 5 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑇}))
37363ad2ant1 1113 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝑁‘{𝑋}) = (𝑁‘{𝑇}))
38 eqidd 2773 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝐼‘⟨𝑋, 𝐹, 𝑤⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
39 eqid 2772 . . . . 5 (LSubSp‘𝑈) = (LSubSp‘𝑈)
401, 2, 5dvhlmod 37639 . . . . . 6 (𝜑𝑈 ∈ LMod)
41403ad2ant1 1113 . . . . 5 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑈 ∈ LMod)
423, 39, 4, 40, 7, 9lspprcl 19462 . . . . . 6 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
43423ad2ant1 1113 . . . . 5 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
44 simp2 1117 . . . . 5 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑤𝑉)
45 simp3l 1181 . . . . 5 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
4614, 39, 41, 43, 44, 45lssneln0 19436 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑤 ∈ (𝑉 ∖ { 0 }))
471, 2, 5dvhlvec 37638 . . . . . . . 8 (𝜑𝑈 ∈ LVec)
48473ad2ant1 1113 . . . . . . 7 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑈 ∈ LVec)
4973ad2ant1 1113 . . . . . . 7 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑋𝑉)
5093ad2ant1 1113 . . . . . . 7 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑌𝑉)
513, 4, 48, 44, 49, 50, 45lspindpi 19616 . . . . . 6 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})))
5251simprd 488 . . . . 5 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))
5352necomd 3016 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}))
54 simpl1 1171 . . . . . . 7 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) → 𝜑)
5554, 47syl 17 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) → 𝑈 ∈ LVec)
5654, 6syl 17 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) → 𝑋 ∈ (𝑉 ∖ { 0 }))
57 simpl2 1172 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) → 𝑤𝑉)
5854, 9syl 17 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) → 𝑌𝑉)
59 mapdh8ad.xy . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
6054, 59syl 17 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
61 simpr 477 . . . . . . 7 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) → 𝑋 ∈ (𝑁‘{𝑌, 𝑤}))
62 prcom 4536 . . . . . . . 8 {𝑌, 𝑤} = {𝑤, 𝑌}
6362fveq2i 6496 . . . . . . 7 (𝑁‘{𝑌, 𝑤}) = (𝑁‘{𝑤, 𝑌})
6461, 63syl6eleq 2870 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) → 𝑋 ∈ (𝑁‘{𝑤, 𝑌}))
653, 14, 4, 55, 56, 57, 58, 60, 64lspexch 19613 . . . . 5 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) → 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
6645, 65mtand 803 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤}))
67113ad2ant1 1113 . . . . . 6 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑍𝑉)
68 simp3r 1182 . . . . . 6 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))
693, 4, 48, 44, 49, 67, 68lspindpi 19616 . . . . 5 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑍})))
7069simprd 488 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑍}))
71 simpl1 1171 . . . . . . 7 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑤, 𝑍})) → 𝜑)
7271, 47syl 17 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑤, 𝑍})) → 𝑈 ∈ LVec)
7371, 6syl 17 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑤, 𝑍})) → 𝑋 ∈ (𝑉 ∖ { 0 }))
74 simpl2 1172 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑤, 𝑍})) → 𝑤𝑉)
7571, 11syl 17 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑤, 𝑍})) → 𝑍𝑉)
76 mapdh8ad.xz . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
7771, 76syl 17 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑤, 𝑍})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
78 simpr 477 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑤, 𝑍})) → 𝑋 ∈ (𝑁‘{𝑤, 𝑍}))
793, 14, 4, 72, 73, 74, 75, 77, 78lspexch 19613 . . . . 5 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑤, 𝑍})) → 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))
8068, 79mtand 803 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → ¬ 𝑋 ∈ (𝑁‘{𝑤, 𝑍}))
811, 2, 3, 13, 14, 4, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 28, 30, 31, 32, 33, 35, 37, 38, 46, 53, 66, 70, 80mapdh8ac 38307 . . 3 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑍, 𝐸, 𝑇⟩))
8281rexlimdv3a 3225 . 2 (𝜑 → (∃𝑤𝑉𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑍, 𝐸, 𝑇⟩)))
8312, 82mpd 15 1 (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑍, 𝐸, 𝑇⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2048  wne 2961  wrex 3083  Vcvv 3409  cdif 3822  ifcif 4344  {csn 4435  {cpr 4437  cotp 4443  cmpt 5002  cfv 6182  crio 6930  (class class class)co 6970  1st c1st 7492  2nd c2nd 7493  Basecbs 16329  0gc0g 16559  -gcsg 17883  LModclmod 19346  LSubSpclss 19415  LSpanclspn 19455  LVecclvec 19586  HLchlt 35879  LHypclh 36513  DVecHcdvh 37607  LCDualclcd 38115  mapdcmpd 38153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404  ax-riotaBAD 35482
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-ot 4444  df-uni 4707  df-int 4744  df-iun 4788  df-iin 4789  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-of 7221  df-om 7391  df-1st 7494  df-2nd 7495  df-tpos 7688  df-undef 7735  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-oadd 7901  df-er 8081  df-map 8200  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-nn 11432  df-2 11496  df-3 11497  df-4 11498  df-5 11499  df-6 11500  df-n0 11701  df-z 11787  df-uz 12052  df-fz 12702  df-struct 16331  df-ndx 16332  df-slot 16333  df-base 16335  df-sets 16336  df-ress 16337  df-plusg 16424  df-mulr 16425  df-sca 16427  df-vsca 16428  df-0g 16561  df-mre 16705  df-mrc 16706  df-acs 16708  df-proset 17386  df-poset 17404  df-plt 17416  df-lub 17432  df-glb 17433  df-join 17434  df-meet 17435  df-p0 17497  df-p1 17498  df-lat 17504  df-clat 17566  df-mgm 17700  df-sgrp 17742  df-mnd 17753  df-submnd 17794  df-grp 17884  df-minusg 17885  df-sbg 17886  df-subg 18050  df-cntz 18208  df-oppg 18235  df-lsm 18512  df-cmn 18658  df-abl 18659  df-mgp 18953  df-ur 18965  df-ring 19012  df-oppr 19086  df-dvdsr 19104  df-unit 19105  df-invr 19135  df-dvr 19146  df-drng 19217  df-lmod 19348  df-lss 19416  df-lsp 19456  df-lvec 19587  df-lsatoms 35505  df-lshyp 35506  df-lcv 35548  df-lfl 35587  df-lkr 35615  df-ldual 35653  df-oposet 35705  df-ol 35707  df-oml 35708  df-covers 35795  df-ats 35796  df-atl 35827  df-cvlat 35851  df-hlat 35880  df-llines 36027  df-lplanes 36028  df-lvols 36029  df-lines 36030  df-psubsp 36032  df-pmap 36033  df-padd 36325  df-lhyp 36517  df-laut 36518  df-ldil 36633  df-ltrn 36634  df-trl 36688  df-tgrp 37272  df-tendo 37284  df-edring 37286  df-dveca 37532  df-disoa 37558  df-dvech 37608  df-dib 37668  df-dic 37702  df-dih 37758  df-doch 37877  df-djh 37924  df-lcdual 38116  df-mapd 38154
This theorem is referenced by:  mapdh8j  38316
  Copyright terms: Public domain W3C validator