MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrodpm Structured version   Visualization version   GIF version

Theorem pmtrodpm 20295
Description: A transposition is an odd permutation. (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
evpmodpmf1o.s 𝑆 = (SymGrp‘𝐷)
evpmodpmf1o.p 𝑃 = (Base‘𝑆)
pmtrodpm.t 𝑇 = ran (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrodpm ((𝐷 ∈ Fin ∧ 𝐹𝑇) → 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷)))

Proof of Theorem pmtrodpm
StepHypRef Expression
1 simpl 486 . 2 ((𝐷 ∈ Fin ∧ 𝐹𝑇) → 𝐷 ∈ Fin)
2 pmtrodpm.t . . . . 5 𝑇 = ran (pmTrsp‘𝐷)
3 evpmodpmf1o.s . . . . 5 𝑆 = (SymGrp‘𝐷)
4 evpmodpmf1o.p . . . . 5 𝑃 = (Base‘𝑆)
52, 3, 4symgtrf 18599 . . . 4 𝑇𝑃
65sseli 3949 . . 3 (𝐹𝑇𝐹𝑃)
76adantl 485 . 2 ((𝐷 ∈ Fin ∧ 𝐹𝑇) → 𝐹𝑃)
8 eqid 2824 . . . 4 (pmSgn‘𝐷) = (pmSgn‘𝐷)
93, 2, 8psgnpmtr 18640 . . 3 (𝐹𝑇 → ((pmSgn‘𝐷)‘𝐹) = -1)
109adantl 485 . 2 ((𝐷 ∈ Fin ∧ 𝐹𝑇) → ((pmSgn‘𝐷)‘𝐹) = -1)
113, 4, 8psgnodpmr 20288 . 2 ((𝐷 ∈ Fin ∧ 𝐹𝑃 ∧ ((pmSgn‘𝐷)‘𝐹) = -1) → 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷)))
121, 7, 10, 11syl3anc 1368 1 ((𝐷 ∈ Fin ∧ 𝐹𝑇) → 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  cdif 3916  ran crn 5544  cfv 6345  Fincfn 8507  1c1 10538  -cneg 10871  Basecbs 16485  SymGrpcsymg 18497  pmTrspcpmtr 18571  pmSgncpsgn 18619  pmEvencevpm 18620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-xor 1503  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-ot 4559  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-isom 6354  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7577  df-1st 7686  df-2nd 7687  df-tpos 7890  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-1o 8100  df-2o 8101  df-oadd 8104  df-er 8287  df-map 8406  df-en 8508  df-dom 8509  df-sdom 8510  df-fin 8511  df-card 9367  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11637  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-xnn0 11967  df-z 11981  df-dec 12098  df-uz 12243  df-rp 12389  df-fz 12897  df-fzo 13040  df-seq 13376  df-exp 13437  df-hash 13698  df-word 13869  df-lsw 13917  df-concat 13925  df-s1 13952  df-substr 14005  df-pfx 14035  df-splice 14114  df-reverse 14123  df-s2 14212  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-0g 16717  df-gsum 16718  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-efmnd 18036  df-grp 18108  df-minusg 18109  df-subg 18278  df-ghm 18358  df-gim 18401  df-oppg 18476  df-symg 18498  df-pmtr 18572  df-psgn 18621  df-evpm 18622  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-cring 19302  df-oppr 19378  df-dvdsr 19396  df-unit 19397  df-invr 19427  df-dvr 19438  df-drng 19506  df-cnfld 20101
This theorem is referenced by:  mdetralt  21222  mdetunilem7  21232  cyc3conja  30841
  Copyright terms: Public domain W3C validator