Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusscaval Structured version   Visualization version   GIF version

Theorem qusscaval 30923
 Description: Value of the scalar multiplication operation on the quotient structure. (Contributed by Thierry Arnoux, 18-May-2023.)
Hypotheses
Ref Expression
eqgvscpbl.v 𝐵 = (Base‘𝑀)
eqgvscpbl.e = (𝑀 ~QG 𝐺)
eqgvscpbl.s 𝑆 = (Base‘(Scalar‘𝑀))
eqgvscpbl.p · = ( ·𝑠𝑀)
eqgvscpbl.m (𝜑𝑀 ∈ LMod)
eqgvscpbl.g (𝜑𝐺 ∈ (LSubSp‘𝑀))
eqgvscpbl.k (𝜑𝐾𝑆)
qusscaval.n 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
qusscaval.m = ( ·𝑠𝑁)
Assertion
Ref Expression
qusscaval ((𝜑𝐾𝑆𝑋𝐵) → (𝐾 [𝑋](𝑀 ~QG 𝐺)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺))

Proof of Theorem qusscaval
Dummy variables 𝑘 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusscaval.n . . . . 5 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
21a1i 11 . . . 4 (𝜑𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)))
3 eqgvscpbl.v . . . . 5 𝐵 = (Base‘𝑀)
43a1i 11 . . . 4 (𝜑𝐵 = (Base‘𝑀))
5 eqid 2823 . . . 4 (𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) = (𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))
6 ovex 7191 . . . . 5 (𝑀 ~QG 𝐺) ∈ V
76a1i 11 . . . 4 (𝜑 → (𝑀 ~QG 𝐺) ∈ V)
8 eqgvscpbl.m . . . 4 (𝜑𝑀 ∈ LMod)
92, 4, 5, 7, 8qusval 16817 . . 3 (𝜑𝑁 = ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) “s 𝑀))
102, 4, 5, 7, 8quslem 16818 . . 3 (𝜑 → (𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)):𝐵onto→(𝐵 / (𝑀 ~QG 𝐺)))
11 eqid 2823 . . 3 (Scalar‘𝑀) = (Scalar‘𝑀)
12 eqgvscpbl.s . . 3 𝑆 = (Base‘(Scalar‘𝑀))
13 eqgvscpbl.p . . 3 · = ( ·𝑠𝑀)
14 qusscaval.m . . 3 = ( ·𝑠𝑁)
15 eqgvscpbl.e . . . 4 = (𝑀 ~QG 𝐺)
168adantr 483 . . . 4 ((𝜑 ∧ (𝑘𝑆𝑢𝐵𝑣𝐵)) → 𝑀 ∈ LMod)
17 eqgvscpbl.g . . . . 5 (𝜑𝐺 ∈ (LSubSp‘𝑀))
1817adantr 483 . . . 4 ((𝜑 ∧ (𝑘𝑆𝑢𝐵𝑣𝐵)) → 𝐺 ∈ (LSubSp‘𝑀))
19 simpr1 1190 . . . 4 ((𝜑 ∧ (𝑘𝑆𝑢𝐵𝑣𝐵)) → 𝑘𝑆)
20 simpr2 1191 . . . 4 ((𝜑 ∧ (𝑘𝑆𝑢𝐵𝑣𝐵)) → 𝑢𝐵)
21 simpr3 1192 . . . 4 ((𝜑 ∧ (𝑘𝑆𝑢𝐵𝑣𝐵)) → 𝑣𝐵)
223, 15, 12, 13, 16, 18, 19, 1, 14, 5, 20, 21qusvscpbl 30922 . . 3 ((𝜑 ∧ (𝑘𝑆𝑢𝐵𝑣𝐵)) → (((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑢) = ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑣) → ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘 · 𝑢)) = ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘 · 𝑣))))
239, 4, 10, 8, 11, 12, 13, 14, 22imasvscaval 16813 . 2 ((𝜑𝐾𝑆𝑋𝐵) → (𝐾 ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋)) = ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋)))
24 eceq1 8329 . . . . 5 (𝑥 = 𝑋 → [𝑥](𝑀 ~QG 𝐺) = [𝑋](𝑀 ~QG 𝐺))
25 ecexg 8295 . . . . . 6 ((𝑀 ~QG 𝐺) ∈ V → [𝑋](𝑀 ~QG 𝐺) ∈ V)
266, 25ax-mp 5 . . . . 5 [𝑋](𝑀 ~QG 𝐺) ∈ V
2724, 5, 26fvmpt 6770 . . . 4 (𝑋𝐵 → ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋) = [𝑋](𝑀 ~QG 𝐺))
28273ad2ant3 1131 . . 3 ((𝜑𝐾𝑆𝑋𝐵) → ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋) = [𝑋](𝑀 ~QG 𝐺))
2928oveq2d 7174 . 2 ((𝜑𝐾𝑆𝑋𝐵) → (𝐾 ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋)) = (𝐾 [𝑋](𝑀 ~QG 𝐺)))
303, 11, 13, 12lmodvscl 19653 . . . 4 ((𝑀 ∈ LMod ∧ 𝐾𝑆𝑋𝐵) → (𝐾 · 𝑋) ∈ 𝐵)
318, 30syl3an1 1159 . . 3 ((𝜑𝐾𝑆𝑋𝐵) → (𝐾 · 𝑋) ∈ 𝐵)
32 eceq1 8329 . . . 4 (𝑥 = (𝐾 · 𝑋) → [𝑥](𝑀 ~QG 𝐺) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺))
33 ecexg 8295 . . . . 5 ((𝑀 ~QG 𝐺) ∈ V → [(𝐾 · 𝑋)](𝑀 ~QG 𝐺) ∈ V)
346, 33ax-mp 5 . . . 4 [(𝐾 · 𝑋)](𝑀 ~QG 𝐺) ∈ V
3532, 5, 34fvmpt 6770 . . 3 ((𝐾 · 𝑋) ∈ 𝐵 → ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺))
3631, 35syl 17 . 2 ((𝜑𝐾𝑆𝑋𝐵) → ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺))
3723, 29, 363eqtr3d 2866 1 ((𝜑𝐾𝑆𝑋𝐵) → (𝐾 [𝑋](𝑀 ~QG 𝐺)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   ∧ w3a 1083   = wceq 1537   ∈ wcel 2114  Vcvv 3496   ↦ cmpt 5148  ‘cfv 6357  (class class class)co 7158  [cec 8289   / cqs 8290  Basecbs 16485  Scalarcsca 16570   ·𝑠 cvsca 16571   /s cqus 16780   ~QG cqg 18277  LModclmod 19636  LSubSpclss 19705 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-ec 8293  df-qs 8297  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-0g 16717  df-imas 16783  df-qus 16784  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-sbg 18110  df-subg 18278  df-eqg 18280  df-mgp 19242  df-ur 19254  df-ring 19301  df-lmod 19638  df-lss 19706 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator