Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusscaval Structured version   Visualization version   GIF version

Theorem qusscaval 30972
Description: Value of the scalar multiplication operation on the quotient structure. (Contributed by Thierry Arnoux, 18-May-2023.)
Hypotheses
Ref Expression
eqgvscpbl.v 𝐵 = (Base‘𝑀)
eqgvscpbl.e = (𝑀 ~QG 𝐺)
eqgvscpbl.s 𝑆 = (Base‘(Scalar‘𝑀))
eqgvscpbl.p · = ( ·𝑠𝑀)
eqgvscpbl.m (𝜑𝑀 ∈ LMod)
eqgvscpbl.g (𝜑𝐺 ∈ (LSubSp‘𝑀))
eqgvscpbl.k (𝜑𝐾𝑆)
qusscaval.n 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
qusscaval.m = ( ·𝑠𝑁)
Assertion
Ref Expression
qusscaval ((𝜑𝐾𝑆𝑋𝐵) → (𝐾 [𝑋](𝑀 ~QG 𝐺)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺))

Proof of Theorem qusscaval
Dummy variables 𝑘 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusscaval.n . . . . 5 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
21a1i 11 . . . 4 (𝜑𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)))
3 eqgvscpbl.v . . . . 5 𝐵 = (Base‘𝑀)
43a1i 11 . . . 4 (𝜑𝐵 = (Base‘𝑀))
5 eqid 2798 . . . 4 (𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) = (𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))
6 ovex 7168 . . . . 5 (𝑀 ~QG 𝐺) ∈ V
76a1i 11 . . . 4 (𝜑 → (𝑀 ~QG 𝐺) ∈ V)
8 eqgvscpbl.m . . . 4 (𝜑𝑀 ∈ LMod)
92, 4, 5, 7, 8qusval 16807 . . 3 (𝜑𝑁 = ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) “s 𝑀))
102, 4, 5, 7, 8quslem 16808 . . 3 (𝜑 → (𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)):𝐵onto→(𝐵 / (𝑀 ~QG 𝐺)))
11 eqid 2798 . . 3 (Scalar‘𝑀) = (Scalar‘𝑀)
12 eqgvscpbl.s . . 3 𝑆 = (Base‘(Scalar‘𝑀))
13 eqgvscpbl.p . . 3 · = ( ·𝑠𝑀)
14 qusscaval.m . . 3 = ( ·𝑠𝑁)
15 eqgvscpbl.e . . . 4 = (𝑀 ~QG 𝐺)
168adantr 484 . . . 4 ((𝜑 ∧ (𝑘𝑆𝑢𝐵𝑣𝐵)) → 𝑀 ∈ LMod)
17 eqgvscpbl.g . . . . 5 (𝜑𝐺 ∈ (LSubSp‘𝑀))
1817adantr 484 . . . 4 ((𝜑 ∧ (𝑘𝑆𝑢𝐵𝑣𝐵)) → 𝐺 ∈ (LSubSp‘𝑀))
19 simpr1 1191 . . . 4 ((𝜑 ∧ (𝑘𝑆𝑢𝐵𝑣𝐵)) → 𝑘𝑆)
20 simpr2 1192 . . . 4 ((𝜑 ∧ (𝑘𝑆𝑢𝐵𝑣𝐵)) → 𝑢𝐵)
21 simpr3 1193 . . . 4 ((𝜑 ∧ (𝑘𝑆𝑢𝐵𝑣𝐵)) → 𝑣𝐵)
223, 15, 12, 13, 16, 18, 19, 1, 14, 5, 20, 21qusvscpbl 30971 . . 3 ((𝜑 ∧ (𝑘𝑆𝑢𝐵𝑣𝐵)) → (((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑢) = ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑣) → ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘 · 𝑢)) = ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘 · 𝑣))))
239, 4, 10, 8, 11, 12, 13, 14, 22imasvscaval 16803 . 2 ((𝜑𝐾𝑆𝑋𝐵) → (𝐾 ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋)) = ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋)))
24 eceq1 8310 . . . . 5 (𝑥 = 𝑋 → [𝑥](𝑀 ~QG 𝐺) = [𝑋](𝑀 ~QG 𝐺))
25 ecexg 8276 . . . . . 6 ((𝑀 ~QG 𝐺) ∈ V → [𝑋](𝑀 ~QG 𝐺) ∈ V)
266, 25ax-mp 5 . . . . 5 [𝑋](𝑀 ~QG 𝐺) ∈ V
2724, 5, 26fvmpt 6745 . . . 4 (𝑋𝐵 → ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋) = [𝑋](𝑀 ~QG 𝐺))
28273ad2ant3 1132 . . 3 ((𝜑𝐾𝑆𝑋𝐵) → ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋) = [𝑋](𝑀 ~QG 𝐺))
2928oveq2d 7151 . 2 ((𝜑𝐾𝑆𝑋𝐵) → (𝐾 ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋)) = (𝐾 [𝑋](𝑀 ~QG 𝐺)))
303, 11, 13, 12lmodvscl 19644 . . . 4 ((𝑀 ∈ LMod ∧ 𝐾𝑆𝑋𝐵) → (𝐾 · 𝑋) ∈ 𝐵)
318, 30syl3an1 1160 . . 3 ((𝜑𝐾𝑆𝑋𝐵) → (𝐾 · 𝑋) ∈ 𝐵)
32 eceq1 8310 . . . 4 (𝑥 = (𝐾 · 𝑋) → [𝑥](𝑀 ~QG 𝐺) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺))
33 ecexg 8276 . . . . 5 ((𝑀 ~QG 𝐺) ∈ V → [(𝐾 · 𝑋)](𝑀 ~QG 𝐺) ∈ V)
346, 33ax-mp 5 . . . 4 [(𝐾 · 𝑋)](𝑀 ~QG 𝐺) ∈ V
3532, 5, 34fvmpt 6745 . . 3 ((𝐾 · 𝑋) ∈ 𝐵 → ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺))
3631, 35syl 17 . 2 ((𝜑𝐾𝑆𝑋𝐵) → ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺))
3723, 29, 363eqtr3d 2841 1 ((𝜑𝐾𝑆𝑋𝐵) → (𝐾 [𝑋](𝑀 ~QG 𝐺)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3441  cmpt 5110  cfv 6324  (class class class)co 7135  [cec 8270   / cqs 8271  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561   /s cqus 16770   ~QG cqg 18267  LModclmod 19627  LSubSpclss 19696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-ec 8274  df-qs 8278  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-0g 16707  df-imas 16773  df-qus 16774  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-eqg 18270  df-mgp 19233  df-ur 19245  df-ring 19292  df-lmod 19629  df-lss 19697
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator