Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > qusscaval | Structured version Visualization version GIF version |
Description: Value of the scalar multiplication operation on the quotient structure. (Contributed by Thierry Arnoux, 18-May-2023.) |
Ref | Expression |
---|---|
eqgvscpbl.v | ⊢ 𝐵 = (Base‘𝑀) |
eqgvscpbl.e | ⊢ ∼ = (𝑀 ~QG 𝐺) |
eqgvscpbl.s | ⊢ 𝑆 = (Base‘(Scalar‘𝑀)) |
eqgvscpbl.p | ⊢ · = ( ·𝑠 ‘𝑀) |
eqgvscpbl.m | ⊢ (𝜑 → 𝑀 ∈ LMod) |
eqgvscpbl.g | ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) |
eqgvscpbl.k | ⊢ (𝜑 → 𝐾 ∈ 𝑆) |
qusscaval.n | ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) |
qusscaval.m | ⊢ ∙ = ( ·𝑠 ‘𝑁) |
Ref | Expression |
---|---|
qusscaval | ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑆 ∧ 𝑋 ∈ 𝐵) → (𝐾 ∙ [𝑋](𝑀 ~QG 𝐺)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusscaval.n | . . . . 5 ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))) |
3 | eqgvscpbl.v | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝑀)) |
5 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) = (𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) | |
6 | ovex 7288 | . . . . 5 ⊢ (𝑀 ~QG 𝐺) ∈ V | |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑀 ~QG 𝐺) ∈ V) |
8 | eqgvscpbl.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ LMod) | |
9 | 2, 4, 5, 7, 8 | qusval 17170 | . . 3 ⊢ (𝜑 → 𝑁 = ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) “s 𝑀)) |
10 | 2, 4, 5, 7, 8 | quslem 17171 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)):𝐵–onto→(𝐵 / (𝑀 ~QG 𝐺))) |
11 | eqid 2738 | . . 3 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
12 | eqgvscpbl.s | . . 3 ⊢ 𝑆 = (Base‘(Scalar‘𝑀)) | |
13 | eqgvscpbl.p | . . 3 ⊢ · = ( ·𝑠 ‘𝑀) | |
14 | qusscaval.m | . . 3 ⊢ ∙ = ( ·𝑠 ‘𝑁) | |
15 | eqgvscpbl.e | . . . 4 ⊢ ∼ = (𝑀 ~QG 𝐺) | |
16 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → 𝑀 ∈ LMod) |
17 | eqgvscpbl.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) | |
18 | 17 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → 𝐺 ∈ (LSubSp‘𝑀)) |
19 | simpr1 1192 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → 𝑘 ∈ 𝑆) | |
20 | simpr2 1193 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → 𝑢 ∈ 𝐵) | |
21 | simpr3 1194 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → 𝑣 ∈ 𝐵) | |
22 | 3, 15, 12, 13, 16, 18, 19, 1, 14, 5, 20, 21 | qusvscpbl 31453 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑢) = ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑣) → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘 · 𝑢)) = ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘 · 𝑣)))) |
23 | 9, 4, 10, 8, 11, 12, 13, 14, 22 | imasvscaval 17166 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑆 ∧ 𝑋 ∈ 𝐵) → (𝐾 ∙ ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋)) = ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋))) |
24 | eceq1 8494 | . . . . 5 ⊢ (𝑥 = 𝑋 → [𝑥](𝑀 ~QG 𝐺) = [𝑋](𝑀 ~QG 𝐺)) | |
25 | ecexg 8460 | . . . . . 6 ⊢ ((𝑀 ~QG 𝐺) ∈ V → [𝑋](𝑀 ~QG 𝐺) ∈ V) | |
26 | 6, 25 | ax-mp 5 | . . . . 5 ⊢ [𝑋](𝑀 ~QG 𝐺) ∈ V |
27 | 24, 5, 26 | fvmpt 6857 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋) = [𝑋](𝑀 ~QG 𝐺)) |
28 | 27 | 3ad2ant3 1133 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑆 ∧ 𝑋 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋) = [𝑋](𝑀 ~QG 𝐺)) |
29 | 28 | oveq2d 7271 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑆 ∧ 𝑋 ∈ 𝐵) → (𝐾 ∙ ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋)) = (𝐾 ∙ [𝑋](𝑀 ~QG 𝐺))) |
30 | 3, 11, 13, 12 | lmodvscl 20055 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝐾 ∈ 𝑆 ∧ 𝑋 ∈ 𝐵) → (𝐾 · 𝑋) ∈ 𝐵) |
31 | 8, 30 | syl3an1 1161 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑆 ∧ 𝑋 ∈ 𝐵) → (𝐾 · 𝑋) ∈ 𝐵) |
32 | eceq1 8494 | . . . 4 ⊢ (𝑥 = (𝐾 · 𝑋) → [𝑥](𝑀 ~QG 𝐺) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺)) | |
33 | ecexg 8460 | . . . . 5 ⊢ ((𝑀 ~QG 𝐺) ∈ V → [(𝐾 · 𝑋)](𝑀 ~QG 𝐺) ∈ V) | |
34 | 6, 33 | ax-mp 5 | . . . 4 ⊢ [(𝐾 · 𝑋)](𝑀 ~QG 𝐺) ∈ V |
35 | 32, 5, 34 | fvmpt 6857 | . . 3 ⊢ ((𝐾 · 𝑋) ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺)) |
36 | 31, 35 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑆 ∧ 𝑋 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺)) |
37 | 23, 29, 36 | 3eqtr3d 2786 | 1 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑆 ∧ 𝑋 ∈ 𝐵) → (𝐾 ∙ [𝑋](𝑀 ~QG 𝐺)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 [cec 8454 / cqs 8455 Basecbs 16840 Scalarcsca 16891 ·𝑠 cvsca 16892 /s cqus 17133 ~QG cqg 18666 LModclmod 20038 LSubSpclss 20108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-ec 8458 df-qs 8462 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-0g 17069 df-imas 17136 df-qus 17137 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-eqg 18669 df-mgp 19636 df-ur 19653 df-ring 19700 df-lmod 20040 df-lss 20109 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |