Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > retancld | Structured version Visualization version GIF version |
Description: Closure of the tangent function. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
resincld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
retancld.2 | ⊢ (𝜑 → (cos‘𝐴) ≠ 0) |
Ref | Expression |
---|---|
retancld | ⊢ (𝜑 → (tan‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resincld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | retancld.2 | . 2 ⊢ (𝜑 → (cos‘𝐴) ≠ 0) | |
3 | retancl 15754 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ ℝ) | |
4 | 1, 2, 3 | syl2anc 587 | 1 ⊢ (𝜑 → (tan‘𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2112 ≠ wne 2943 ‘cfv 6415 ℝcr 10776 0cc0 10777 cosccos 15677 tanctan 15678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-inf2 9304 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 ax-pre-mulgt0 10854 ax-pre-sup 10855 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-se 5535 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-isom 6424 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-1st 7801 df-2nd 7802 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-1o 8244 df-er 8433 df-pm 8553 df-en 8669 df-dom 8670 df-sdom 8671 df-fin 8672 df-sup 9106 df-inf 9107 df-oi 9174 df-card 9603 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-sub 11112 df-neg 11113 df-div 11538 df-nn 11879 df-2 11941 df-3 11942 df-n0 12139 df-z 12225 df-uz 12487 df-rp 12635 df-ico 12989 df-fz 13144 df-fzo 13287 df-fl 13415 df-seq 13625 df-exp 13686 df-fac 13891 df-hash 13948 df-shft 14681 df-cj 14713 df-re 14714 df-im 14715 df-sqrt 14849 df-abs 14850 df-limsup 15083 df-clim 15100 df-rlim 15101 df-sum 15301 df-ef 15680 df-sin 15682 df-cos 15683 df-tan 15684 |
This theorem is referenced by: tanabsge 25543 tanord1 25573 tanord 25574 tanregt0 25575 logcnlem4 25680 |
Copyright terms: Public domain | W3C validator |