| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > znhash | GIF version | ||
| Description: The ℤ/nℤ structure has 𝑛 elements. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| Ref | Expression |
|---|---|
| zntos.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
| znhash.1 | ⊢ 𝐵 = (Base‘𝑌) |
| Ref | Expression |
|---|---|
| znhash | ⊢ (𝑁 ∈ ℕ → (♯‘𝐵) = 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 9390 | . . . . . 6 ⊢ 0 ∈ ℤ | |
| 2 | nnz 9398 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
| 3 | fzofig 10584 | . . . . . 6 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0..^𝑁) ∈ Fin) | |
| 4 | 1, 2, 3 | sylancr 414 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (0..^𝑁) ∈ Fin) |
| 5 | nnnn0 9309 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 6 | zntos.y | . . . . . . . 8 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
| 7 | znhash.1 | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑌) | |
| 8 | eqid 2206 | . . . . . . . 8 ⊢ ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) = ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) | |
| 9 | eqid 2206 | . . . . . . . 8 ⊢ if(𝑁 = 0, ℤ, (0..^𝑁)) = if(𝑁 = 0, ℤ, (0..^𝑁)) | |
| 10 | 6, 7, 8, 9 | znf1o 14457 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→𝐵) |
| 11 | 5, 10 | syl 14 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→𝐵) |
| 12 | nnne0 9071 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
| 13 | ifnefalse 3583 | . . . . . . 7 ⊢ (𝑁 ≠ 0 → if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁)) | |
| 14 | f1oeq2 5518 | . . . . . . 7 ⊢ (if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁) → (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→𝐵 ↔ ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):(0..^𝑁)–1-1-onto→𝐵)) | |
| 15 | 12, 13, 14 | 3syl 17 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→𝐵 ↔ ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):(0..^𝑁)–1-1-onto→𝐵)) |
| 16 | 11, 15 | mpbid 147 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):(0..^𝑁)–1-1-onto→𝐵) |
| 17 | f1oeng 6855 | . . . . 5 ⊢ (((0..^𝑁) ∈ Fin ∧ ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):(0..^𝑁)–1-1-onto→𝐵) → (0..^𝑁) ≈ 𝐵) | |
| 18 | 4, 16, 17 | syl2anc 411 | . . . 4 ⊢ (𝑁 ∈ ℕ → (0..^𝑁) ≈ 𝐵) |
| 19 | 18 | ensymd 6882 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝐵 ≈ (0..^𝑁)) |
| 20 | 6, 7 | znfi 14461 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝐵 ∈ Fin) |
| 21 | hashen 10936 | . . . 4 ⊢ ((𝐵 ∈ Fin ∧ (0..^𝑁) ∈ Fin) → ((♯‘𝐵) = (♯‘(0..^𝑁)) ↔ 𝐵 ≈ (0..^𝑁))) | |
| 22 | 20, 4, 21 | syl2anc 411 | . . 3 ⊢ (𝑁 ∈ ℕ → ((♯‘𝐵) = (♯‘(0..^𝑁)) ↔ 𝐵 ≈ (0..^𝑁))) |
| 23 | 19, 22 | mpbird 167 | . 2 ⊢ (𝑁 ∈ ℕ → (♯‘𝐵) = (♯‘(0..^𝑁))) |
| 24 | hashfzo0 10975 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (♯‘(0..^𝑁)) = 𝑁) | |
| 25 | 5, 24 | syl 14 | . 2 ⊢ (𝑁 ∈ ℕ → (♯‘(0..^𝑁)) = 𝑁) |
| 26 | 23, 25 | eqtrd 2239 | 1 ⊢ (𝑁 ∈ ℕ → (♯‘𝐵) = 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 ifcif 3572 class class class wbr 4047 ↾ cres 4681 –1-1-onto→wf1o 5275 ‘cfv 5276 (class class class)co 5951 ≈ cen 6832 Fincfn 6834 0cc0 7932 ℕcn 9043 ℕ0cn0 9302 ℤcz 9379 ..^cfzo 10271 ♯chash 10927 Basecbs 12876 ℤRHomczrh 14417 ℤ/nℤczn 14419 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-addf 8054 ax-mulf 8055 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-tp 3642 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-tpos 6338 df-recs 6398 df-frec 6484 df-1o 6509 df-er 6627 df-ec 6629 df-qs 6633 df-map 6744 df-en 6835 df-dom 6836 df-fin 6837 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-9 9109 df-n0 9303 df-z 9380 df-dec 9512 df-uz 9656 df-q 9748 df-rp 9783 df-fz 10138 df-fzo 10272 df-fl 10420 df-mod 10475 df-seqfrec 10600 df-ihash 10928 df-cj 11197 df-abs 11354 df-dvds 12143 df-struct 12878 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-iress 12884 df-plusg 12966 df-mulr 12967 df-starv 12968 df-sca 12969 df-vsca 12970 df-ip 12971 df-tset 12972 df-ple 12973 df-ds 12975 df-unif 12976 df-0g 13134 df-topgen 13136 df-iimas 13178 df-qus 13179 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-mhm 13335 df-grp 13379 df-minusg 13380 df-sbg 13381 df-mulg 13500 df-subg 13550 df-nsg 13551 df-eqg 13552 df-ghm 13621 df-cmn 13666 df-abl 13667 df-mgp 13727 df-rng 13739 df-ur 13766 df-srg 13770 df-ring 13804 df-cring 13805 df-oppr 13874 df-dvdsr 13895 df-rhm 13958 df-subrg 14025 df-lmod 14095 df-lssm 14159 df-lsp 14193 df-sra 14241 df-rgmod 14242 df-lidl 14275 df-rsp 14276 df-2idl 14306 df-bl 14352 df-mopn 14353 df-fg 14355 df-metu 14356 df-cnfld 14363 df-zring 14397 df-zrh 14420 df-zn 14422 |
| This theorem is referenced by: znidom 14463 znidomb 14464 |
| Copyright terms: Public domain | W3C validator |