![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2sqb | Structured version Visualization version GIF version |
Description: The converse to 2sq 27489. (Contributed by Mario Carneiro, 20-Jun-2015.) |
Ref | Expression |
---|---|
2sqb | ⊢ (𝑃 ∈ ℙ → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2)) ↔ (𝑃 = 2 ∨ (𝑃 mod 4) = 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2939 | . . . 4 ⊢ (𝑃 ≠ 2 ↔ ¬ 𝑃 = 2) | |
2 | prmz 16709 | . . . . . . . . . 10 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
3 | 2 | ad3antrrr 730 | . . . . . . . . 9 ⊢ ((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → 𝑃 ∈ ℤ) |
4 | simplrr 778 | . . . . . . . . 9 ⊢ ((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → 𝑦 ∈ ℤ) | |
5 | bezout 16577 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏))) | |
6 | 3, 4, 5 | syl2anc 584 | . . . . . . . 8 ⊢ ((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏))) |
7 | simplll 775 | . . . . . . . . . . 11 ⊢ (((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏)))) → (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2)) | |
8 | simpllr 776 | . . . . . . . . . . 11 ⊢ (((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏)))) → (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) | |
9 | simplr 769 | . . . . . . . . . . 11 ⊢ (((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏)))) → 𝑃 = ((𝑥↑2) + (𝑦↑2))) | |
10 | simprll 779 | . . . . . . . . . . 11 ⊢ (((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏)))) → 𝑎 ∈ ℤ) | |
11 | simprlr 780 | . . . . . . . . . . 11 ⊢ (((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏)))) → 𝑏 ∈ ℤ) | |
12 | simprr 773 | . . . . . . . . . . 11 ⊢ (((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏)))) → (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏))) | |
13 | 7, 8, 9, 10, 11, 12 | 2sqblem 27490 | . . . . . . . . . 10 ⊢ (((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏)))) → (𝑃 mod 4) = 1) |
14 | 13 | expr 456 | . . . . . . . . 9 ⊢ (((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏)) → (𝑃 mod 4) = 1)) |
15 | 14 | rexlimdvva 3211 | . . . . . . . 8 ⊢ ((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏)) → (𝑃 mod 4) = 1)) |
16 | 6, 15 | mpd 15 | . . . . . . 7 ⊢ ((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (𝑃 mod 4) = 1) |
17 | 16 | ex 412 | . . . . . 6 ⊢ (((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑃 = ((𝑥↑2) + (𝑦↑2)) → (𝑃 mod 4) = 1)) |
18 | 17 | rexlimdvva 3211 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2)) → (𝑃 mod 4) = 1)) |
19 | 18 | impancom 451 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (𝑃 ≠ 2 → (𝑃 mod 4) = 1)) |
20 | 1, 19 | biimtrrid 243 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (¬ 𝑃 = 2 → (𝑃 mod 4) = 1)) |
21 | 20 | orrd 863 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (𝑃 = 2 ∨ (𝑃 mod 4) = 1)) |
22 | 1z 12645 | . . . . 5 ⊢ 1 ∈ ℤ | |
23 | oveq1 7438 | . . . . . . . . 9 ⊢ (𝑥 = 1 → (𝑥↑2) = (1↑2)) | |
24 | sq1 14231 | . . . . . . . . 9 ⊢ (1↑2) = 1 | |
25 | 23, 24 | eqtrdi 2791 | . . . . . . . 8 ⊢ (𝑥 = 1 → (𝑥↑2) = 1) |
26 | 25 | oveq1d 7446 | . . . . . . 7 ⊢ (𝑥 = 1 → ((𝑥↑2) + (𝑦↑2)) = (1 + (𝑦↑2))) |
27 | 26 | eqeq2d 2746 | . . . . . 6 ⊢ (𝑥 = 1 → (𝑃 = ((𝑥↑2) + (𝑦↑2)) ↔ 𝑃 = (1 + (𝑦↑2)))) |
28 | oveq1 7438 | . . . . . . . . . 10 ⊢ (𝑦 = 1 → (𝑦↑2) = (1↑2)) | |
29 | 28, 24 | eqtrdi 2791 | . . . . . . . . 9 ⊢ (𝑦 = 1 → (𝑦↑2) = 1) |
30 | 29 | oveq2d 7447 | . . . . . . . 8 ⊢ (𝑦 = 1 → (1 + (𝑦↑2)) = (1 + 1)) |
31 | 1p1e2 12389 | . . . . . . . 8 ⊢ (1 + 1) = 2 | |
32 | 30, 31 | eqtrdi 2791 | . . . . . . 7 ⊢ (𝑦 = 1 → (1 + (𝑦↑2)) = 2) |
33 | 32 | eqeq2d 2746 | . . . . . 6 ⊢ (𝑦 = 1 → (𝑃 = (1 + (𝑦↑2)) ↔ 𝑃 = 2)) |
34 | 27, 33 | rspc2ev 3635 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑃 = 2) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2))) |
35 | 22, 22, 34 | mp3an12 1450 | . . . 4 ⊢ (𝑃 = 2 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2))) |
36 | 35 | adantl 481 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 = 2) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2))) |
37 | 2sq 27489 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2))) | |
38 | 36, 37 | jaodan 959 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 = 2 ∨ (𝑃 mod 4) = 1)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2))) |
39 | 21, 38 | impbida 801 | 1 ⊢ (𝑃 ∈ ℙ → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2)) ↔ (𝑃 = 2 ∨ (𝑃 mod 4) = 1))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∃wrex 3068 (class class class)co 7431 1c1 11154 + caddc 11156 · cmul 11158 2c2 12319 4c4 12321 ℤcz 12611 mod cmo 13906 ↑cexp 14099 gcd cgcd 16528 ℙcprime 16705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 ax-mulf 11233 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-er 8744 df-ec 8746 df-qs 8750 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-inf 9481 df-oi 9548 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-xnn0 12598 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-dvds 16288 df-gcd 16529 df-prm 16706 df-phi 16800 df-pc 16871 df-gz 16964 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-0g 17488 df-gsum 17489 df-prds 17494 df-pws 17496 df-imas 17555 df-qus 17556 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-nsg 19155 df-eqg 19156 df-ghm 19244 df-cntz 19348 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-srg 20205 df-ring 20253 df-cring 20254 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-dvr 20418 df-rhm 20489 df-nzr 20530 df-subrng 20563 df-subrg 20587 df-rlreg 20711 df-domn 20712 df-idom 20713 df-drng 20748 df-field 20749 df-lmod 20877 df-lss 20948 df-lsp 20988 df-sra 21190 df-rgmod 21191 df-lidl 21236 df-rsp 21237 df-2idl 21278 df-cnfld 21383 df-zring 21476 df-zrh 21532 df-zn 21535 df-assa 21891 df-asp 21892 df-ascl 21893 df-psr 21947 df-mvr 21948 df-mpl 21949 df-opsr 21951 df-evls 22116 df-evl 22117 df-psr1 22197 df-vr1 22198 df-ply1 22199 df-coe1 22200 df-evl1 22336 df-mdeg 26109 df-deg1 26110 df-mon1 26185 df-uc1p 26186 df-q1p 26187 df-r1p 26188 df-lgs 27354 |
This theorem is referenced by: 2sqreultblem 27507 2sqreunnltblem 27510 |
Copyright terms: Public domain | W3C validator |