|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 2sqb | Structured version Visualization version GIF version | ||
| Description: The converse to 2sq 27474. (Contributed by Mario Carneiro, 20-Jun-2015.) | 
| Ref | Expression | 
|---|---|
| 2sqb | ⊢ (𝑃 ∈ ℙ → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2)) ↔ (𝑃 = 2 ∨ (𝑃 mod 4) = 1))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ne 2941 | . . . 4 ⊢ (𝑃 ≠ 2 ↔ ¬ 𝑃 = 2) | |
| 2 | prmz 16712 | . . . . . . . . . 10 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
| 3 | 2 | ad3antrrr 730 | . . . . . . . . 9 ⊢ ((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → 𝑃 ∈ ℤ) | 
| 4 | simplrr 778 | . . . . . . . . 9 ⊢ ((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → 𝑦 ∈ ℤ) | |
| 5 | bezout 16580 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏))) | |
| 6 | 3, 4, 5 | syl2anc 584 | . . . . . . . 8 ⊢ ((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏))) | 
| 7 | simplll 775 | . . . . . . . . . . 11 ⊢ (((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏)))) → (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2)) | |
| 8 | simpllr 776 | . . . . . . . . . . 11 ⊢ (((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏)))) → (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) | |
| 9 | simplr 769 | . . . . . . . . . . 11 ⊢ (((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏)))) → 𝑃 = ((𝑥↑2) + (𝑦↑2))) | |
| 10 | simprll 779 | . . . . . . . . . . 11 ⊢ (((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏)))) → 𝑎 ∈ ℤ) | |
| 11 | simprlr 780 | . . . . . . . . . . 11 ⊢ (((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏)))) → 𝑏 ∈ ℤ) | |
| 12 | simprr 773 | . . . . . . . . . . 11 ⊢ (((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏)))) → (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏))) | |
| 13 | 7, 8, 9, 10, 11, 12 | 2sqblem 27475 | . . . . . . . . . 10 ⊢ (((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏)))) → (𝑃 mod 4) = 1) | 
| 14 | 13 | expr 456 | . . . . . . . . 9 ⊢ (((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏)) → (𝑃 mod 4) = 1)) | 
| 15 | 14 | rexlimdvva 3213 | . . . . . . . 8 ⊢ ((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏)) → (𝑃 mod 4) = 1)) | 
| 16 | 6, 15 | mpd 15 | . . . . . . 7 ⊢ ((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (𝑃 mod 4) = 1) | 
| 17 | 16 | ex 412 | . . . . . 6 ⊢ (((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑃 = ((𝑥↑2) + (𝑦↑2)) → (𝑃 mod 4) = 1)) | 
| 18 | 17 | rexlimdvva 3213 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2)) → (𝑃 mod 4) = 1)) | 
| 19 | 18 | impancom 451 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (𝑃 ≠ 2 → (𝑃 mod 4) = 1)) | 
| 20 | 1, 19 | biimtrrid 243 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (¬ 𝑃 = 2 → (𝑃 mod 4) = 1)) | 
| 21 | 20 | orrd 864 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (𝑃 = 2 ∨ (𝑃 mod 4) = 1)) | 
| 22 | 1z 12647 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 23 | oveq1 7438 | . . . . . . . . 9 ⊢ (𝑥 = 1 → (𝑥↑2) = (1↑2)) | |
| 24 | sq1 14234 | . . . . . . . . 9 ⊢ (1↑2) = 1 | |
| 25 | 23, 24 | eqtrdi 2793 | . . . . . . . 8 ⊢ (𝑥 = 1 → (𝑥↑2) = 1) | 
| 26 | 25 | oveq1d 7446 | . . . . . . 7 ⊢ (𝑥 = 1 → ((𝑥↑2) + (𝑦↑2)) = (1 + (𝑦↑2))) | 
| 27 | 26 | eqeq2d 2748 | . . . . . 6 ⊢ (𝑥 = 1 → (𝑃 = ((𝑥↑2) + (𝑦↑2)) ↔ 𝑃 = (1 + (𝑦↑2)))) | 
| 28 | oveq1 7438 | . . . . . . . . . 10 ⊢ (𝑦 = 1 → (𝑦↑2) = (1↑2)) | |
| 29 | 28, 24 | eqtrdi 2793 | . . . . . . . . 9 ⊢ (𝑦 = 1 → (𝑦↑2) = 1) | 
| 30 | 29 | oveq2d 7447 | . . . . . . . 8 ⊢ (𝑦 = 1 → (1 + (𝑦↑2)) = (1 + 1)) | 
| 31 | 1p1e2 12391 | . . . . . . . 8 ⊢ (1 + 1) = 2 | |
| 32 | 30, 31 | eqtrdi 2793 | . . . . . . 7 ⊢ (𝑦 = 1 → (1 + (𝑦↑2)) = 2) | 
| 33 | 32 | eqeq2d 2748 | . . . . . 6 ⊢ (𝑦 = 1 → (𝑃 = (1 + (𝑦↑2)) ↔ 𝑃 = 2)) | 
| 34 | 27, 33 | rspc2ev 3635 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑃 = 2) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2))) | 
| 35 | 22, 22, 34 | mp3an12 1453 | . . . 4 ⊢ (𝑃 = 2 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2))) | 
| 36 | 35 | adantl 481 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 = 2) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2))) | 
| 37 | 2sq 27474 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2))) | |
| 38 | 36, 37 | jaodan 960 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 = 2 ∨ (𝑃 mod 4) = 1)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2))) | 
| 39 | 21, 38 | impbida 801 | 1 ⊢ (𝑃 ∈ ℙ → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2)) ↔ (𝑃 = 2 ∨ (𝑃 mod 4) = 1))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∃wrex 3070 (class class class)co 7431 1c1 11156 + caddc 11158 · cmul 11160 2c2 12321 4c4 12323 ℤcz 12613 mod cmo 13909 ↑cexp 14102 gcd cgcd 16531 ℙcprime 16708 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 ax-mulf 11235 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-oadd 8510 df-er 8745 df-ec 8747 df-qs 8751 df-map 8868 df-pm 8869 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-sup 9482 df-inf 9483 df-oi 9550 df-dju 9941 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-xnn0 12600 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-fz 13548 df-fzo 13695 df-fl 13832 df-mod 13910 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-dvds 16291 df-gcd 16532 df-prm 16709 df-phi 16803 df-pc 16875 df-gz 16968 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-0g 17486 df-gsum 17487 df-prds 17492 df-pws 17494 df-imas 17553 df-qus 17554 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-submnd 18797 df-grp 18954 df-minusg 18955 df-sbg 18956 df-mulg 19086 df-subg 19141 df-nsg 19142 df-eqg 19143 df-ghm 19231 df-cntz 19335 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-srg 20184 df-ring 20232 df-cring 20233 df-oppr 20334 df-dvdsr 20357 df-unit 20358 df-invr 20388 df-dvr 20401 df-rhm 20472 df-nzr 20513 df-subrng 20546 df-subrg 20570 df-rlreg 20694 df-domn 20695 df-idom 20696 df-drng 20731 df-field 20732 df-lmod 20860 df-lss 20930 df-lsp 20970 df-sra 21172 df-rgmod 21173 df-lidl 21218 df-rsp 21219 df-2idl 21260 df-cnfld 21365 df-zring 21458 df-zrh 21514 df-zn 21517 df-assa 21873 df-asp 21874 df-ascl 21875 df-psr 21929 df-mvr 21930 df-mpl 21931 df-opsr 21933 df-evls 22098 df-evl 22099 df-psr1 22181 df-vr1 22182 df-ply1 22183 df-coe1 22184 df-evl1 22320 df-mdeg 26094 df-deg1 26095 df-mon1 26170 df-uc1p 26171 df-q1p 26172 df-r1p 26173 df-lgs 27339 | 
| This theorem is referenced by: 2sqreultblem 27492 2sqreunnltblem 27495 | 
| Copyright terms: Public domain | W3C validator |