MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matbas2i Structured version   Visualization version   GIF version

Theorem matbas2i 22316
Description: A matrix is a function. (Contributed by Stefan O'Rear, 11-Sep-2015.)
Hypotheses
Ref Expression
matbas2.a 𝐴 = (𝑁 Mat 𝑅)
matbas2.k 𝐾 = (Base‘𝑅)
matbas2i.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
matbas2i (𝑀𝐵𝑀 ∈ (𝐾m (𝑁 × 𝑁)))

Proof of Theorem matbas2i
StepHypRef Expression
1 id 22 . . 3 (𝑀𝐵𝑀𝐵)
2 matbas2i.b . . 3 𝐵 = (Base‘𝐴)
31, 2eleqtrdi 2839 . 2 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
4 matbas2.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
54, 2matrcl 22306 . . 3 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
6 matbas2.k . . . 4 𝐾 = (Base‘𝑅)
74, 6matbas2 22315 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝐾m (𝑁 × 𝑁)) = (Base‘𝐴))
85, 7syl 17 . 2 (𝑀𝐵 → (𝐾m (𝑁 × 𝑁)) = (Base‘𝐴))
93, 8eleqtrrd 2832 1 (𝑀𝐵𝑀 ∈ (𝐾m (𝑁 × 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450   × cxp 5639  cfv 6514  (class class class)co 7390  m cmap 8802  Fincfn 8921  Basecbs 17186   Mat cmat 22301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-prds 17417  df-pws 17419  df-sra 21087  df-rgmod 21088  df-dsmm 21648  df-frlm 21663  df-mat 22302
This theorem is referenced by:  eqmat  22318  matplusgcell  22327  matsubgcell  22328  matmulcell  22339  mattposcl  22347  mattpostpos  22348  mattposm  22353  matgsumcl  22354  dmatmul  22391  mdetleib2  22482  mdetf  22489  mdetdiaglem  22492  mdetrlin  22496  mdetrsca  22497  mdetralt  22502  mdetunilem7  22512  mdetunilem9  22514  mdetmul  22517  maducoeval2  22534  madutpos  22536  madugsum  22537  madurid  22538  decpmatval  22659  decpmatmul  22666  pmatcollpw3lem  22677  smatcl  33799  matmpo  33800  submat1n  33802  submateq  33806  madjusmdetlem3  33826
  Copyright terms: Public domain W3C validator