Proof of Theorem modm1nem2
| Step | Hyp | Ref
| Expression |
| 1 | | eluz5nn 12856 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘5) → 𝑁 ∈ ℕ) |
| 2 | 1 | adantr 480 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → 𝑁 ∈ ℕ) |
| 3 | | simpr 484 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → 𝑌 ∈ 𝐼) |
| 4 | | 1zzd 12570 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → 1 ∈ ℤ) |
| 5 | 4 | znegcld 12646 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → -1 ∈ ℤ) |
| 6 | | 2z 12571 |
. . . . 5
⊢ 2 ∈
ℤ |
| 7 | 6 | a1i 11 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → 2 ∈ ℤ) |
| 8 | 7 | znegcld 12646 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → -2 ∈ ℤ) |
| 9 | | ax-1cn 11132 |
. . . . . . . 8
⊢ 1 ∈
ℂ |
| 10 | | 2cn 12262 |
. . . . . . . 8
⊢ 2 ∈
ℂ |
| 11 | | neg2sub 11488 |
. . . . . . . 8
⊢ ((1
∈ ℂ ∧ 2 ∈ ℂ) → (-1 − -2) = (2 −
1)) |
| 12 | 9, 10, 11 | mp2an 692 |
. . . . . . 7
⊢ (-1
− -2) = (2 − 1) |
| 13 | | 2m1e1 12313 |
. . . . . . 7
⊢ (2
− 1) = 1 |
| 14 | 12, 13 | eqtri 2753 |
. . . . . 6
⊢ (-1
− -2) = 1 |
| 15 | 14 | fveq2i 6863 |
. . . . 5
⊢
(abs‘(-1 − -2)) = (abs‘1) |
| 16 | | abs1 15269 |
. . . . 5
⊢
(abs‘1) = 1 |
| 17 | 15, 16 | eqtri 2753 |
. . . 4
⊢
(abs‘(-1 − -2)) = 1 |
| 18 | | eluz2 12805 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘5) ↔ (5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤
𝑁)) |
| 19 | | 1red 11181 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 5 ≤
𝑁) → 1 ∈
ℝ) |
| 20 | | 5re 12274 |
. . . . . . . . . 10
⊢ 5 ∈
ℝ |
| 21 | 20 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 5 ≤
𝑁) → 5 ∈
ℝ) |
| 22 | | zre 12539 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℝ) |
| 23 | 22 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 5 ≤
𝑁) → 𝑁 ∈ ℝ) |
| 24 | | 1lt5 12367 |
. . . . . . . . . 10
⊢ 1 <
5 |
| 25 | 24 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 5 ≤
𝑁) → 1 <
5) |
| 26 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 5 ≤
𝑁) → 5 ≤ 𝑁) |
| 27 | 19, 21, 23, 25, 26 | ltletrd 11340 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 5 ≤
𝑁) → 1 < 𝑁) |
| 28 | 27 | 3adant1 1130 |
. . . . . . 7
⊢ ((5
∈ ℤ ∧ 𝑁
∈ ℤ ∧ 5 ≤ 𝑁) → 1 < 𝑁) |
| 29 | 18, 28 | sylbi 217 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘5) → 1 < 𝑁) |
| 30 | | 1elfzo1 13681 |
. . . . . 6
⊢ (1 ∈
(1..^𝑁) ↔ (𝑁 ∈ ℕ ∧ 1 <
𝑁)) |
| 31 | 1, 29, 30 | sylanbrc 583 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘5) → 1 ∈ (1..^𝑁)) |
| 32 | 31 | adantr 480 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → 1 ∈ (1..^𝑁)) |
| 33 | 17, 32 | eqeltrid 2833 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → (abs‘(-1 − -2)) ∈
(1..^𝑁)) |
| 34 | | modm1nep1.i |
. . . 4
⊢ 𝐼 = (0..^𝑁) |
| 35 | 34 | mod2addne 47355 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝑌 ∈ 𝐼 ∧ -1 ∈ ℤ ∧ -2 ∈
ℤ) ∧ (abs‘(-1 − -2)) ∈ (1..^𝑁)) → ((𝑌 + -1) mod 𝑁) ≠ ((𝑌 + -2) mod 𝑁)) |
| 36 | 2, 3, 5, 8, 33, 35 | syl131anc 1385 |
. 2
⊢ ((𝑁 ∈
(ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → ((𝑌 + -1) mod 𝑁) ≠ ((𝑌 + -2) mod 𝑁)) |
| 37 | | elfzoelz 13626 |
. . . . . . . . 9
⊢ (𝑌 ∈ (0..^𝑁) → 𝑌 ∈ ℤ) |
| 38 | 37, 34 | eleq2s 2847 |
. . . . . . . 8
⊢ (𝑌 ∈ 𝐼 → 𝑌 ∈ ℤ) |
| 39 | 38 | zcnd 12645 |
. . . . . . 7
⊢ (𝑌 ∈ 𝐼 → 𝑌 ∈ ℂ) |
| 40 | | 1cnd 11175 |
. . . . . . 7
⊢ (𝑌 ∈ 𝐼 → 1 ∈ ℂ) |
| 41 | 39, 40 | negsubd 11545 |
. . . . . 6
⊢ (𝑌 ∈ 𝐼 → (𝑌 + -1) = (𝑌 − 1)) |
| 42 | 41 | eqcomd 2736 |
. . . . 5
⊢ (𝑌 ∈ 𝐼 → (𝑌 − 1) = (𝑌 + -1)) |
| 43 | 42 | oveq1d 7404 |
. . . 4
⊢ (𝑌 ∈ 𝐼 → ((𝑌 − 1) mod 𝑁) = ((𝑌 + -1) mod 𝑁)) |
| 44 | | 2cnd 12265 |
. . . . . . 7
⊢ (𝑌 ∈ 𝐼 → 2 ∈ ℂ) |
| 45 | 39, 44 | negsubd 11545 |
. . . . . 6
⊢ (𝑌 ∈ 𝐼 → (𝑌 + -2) = (𝑌 − 2)) |
| 46 | 45 | eqcomd 2736 |
. . . . 5
⊢ (𝑌 ∈ 𝐼 → (𝑌 − 2) = (𝑌 + -2)) |
| 47 | 46 | oveq1d 7404 |
. . . 4
⊢ (𝑌 ∈ 𝐼 → ((𝑌 − 2) mod 𝑁) = ((𝑌 + -2) mod 𝑁)) |
| 48 | 43, 47 | neeq12d 2987 |
. . 3
⊢ (𝑌 ∈ 𝐼 → (((𝑌 − 1) mod 𝑁) ≠ ((𝑌 − 2) mod 𝑁) ↔ ((𝑌 + -1) mod 𝑁) ≠ ((𝑌 + -2) mod 𝑁))) |
| 49 | 48 | adantl 481 |
. 2
⊢ ((𝑁 ∈
(ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → (((𝑌 − 1) mod 𝑁) ≠ ((𝑌 − 2) mod 𝑁) ↔ ((𝑌 + -1) mod 𝑁) ≠ ((𝑌 + -2) mod 𝑁))) |
| 50 | 36, 49 | mpbird 257 |
1
⊢ ((𝑁 ∈
(ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → ((𝑌 − 1) mod 𝑁) ≠ ((𝑌 − 2) mod 𝑁)) |