Proof of Theorem pgnioedg4
| Step | Hyp | Ref
| Expression |
| 1 | | 5eluz3 12848 |
. . . . . 6
⊢ 5 ∈
(ℤ≥‘3) |
| 2 | | pglem 48072 |
. . . . . 6
⊢ 2 ∈
(1..^(⌈‘(5 / 2))) |
| 3 | 1, 2 | pm3.2i 470 |
. . . . 5
⊢ (5 ∈
(ℤ≥‘3) ∧ 2 ∈ (1..^(⌈‘(5 /
2)))) |
| 4 | | 1ex 11176 |
. . . . . 6
⊢ 1 ∈
V |
| 5 | | ovex 7422 |
. . . . . 6
⊢ ((𝑦 − 2) mod 5) ∈
V |
| 6 | 4, 5 | op1st 7978 |
. . . . 5
⊢
(1st ‘〈1, ((𝑦 − 2) mod 5)〉) =
1 |
| 7 | | simpr 484 |
. . . . 5
⊢ ((𝑦 ∈ (0..^5) ∧ {〈1,
((𝑦 − 2) mod
5)〉, 〈0, ((𝑦
− 1) mod 5)〉} ∈ 𝐸) → {〈1, ((𝑦 − 2) mod 5)〉, 〈0, ((𝑦 − 1) mod 5)〉} ∈
𝐸) |
| 8 | | eqid 2730 |
. . . . . 6
⊢
(1..^(⌈‘(5 / 2))) = (1..^(⌈‘(5 /
2))) |
| 9 | | pgnioedg1.g |
. . . . . 6
⊢ 𝐺 = (5 gPetersenGr
2) |
| 10 | | eqid 2730 |
. . . . . 6
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 11 | | pgnioedg1.e |
. . . . . 6
⊢ 𝐸 = (Edg‘𝐺) |
| 12 | 8, 9, 10, 11 | gpgvtxedg1 48045 |
. . . . 5
⊢ (((5
∈ (ℤ≥‘3) ∧ 2 ∈ (1..^(⌈‘(5 /
2)))) ∧ (1st ‘〈1, ((𝑦 − 2) mod 5)〉) = 1 ∧ {〈1,
((𝑦 − 2) mod
5)〉, 〈0, ((𝑦
− 1) mod 5)〉} ∈ 𝐸) → (〈0, ((𝑦 − 1) mod 5)〉 = 〈1,
(((2nd ‘〈1, ((𝑦 − 2) mod 5)〉) + 2) mod 5)〉
∨ 〈0, ((𝑦 −
1) mod 5)〉 = 〈0, (2nd ‘〈1, ((𝑦 − 2) mod 5)〉)〉 ∨ 〈0,
((𝑦 − 1) mod 5)〉
= 〈1, (((2nd ‘〈1, ((𝑦 − 2) mod 5)〉) − 2) mod
5)〉)) |
| 13 | 3, 6, 7, 12 | mp3an12i 1467 |
. . . 4
⊢ ((𝑦 ∈ (0..^5) ∧ {〈1,
((𝑦 − 2) mod
5)〉, 〈0, ((𝑦
− 1) mod 5)〉} ∈ 𝐸) → (〈0, ((𝑦 − 1) mod 5)〉 = 〈1,
(((2nd ‘〈1, ((𝑦 − 2) mod 5)〉) + 2) mod 5)〉
∨ 〈0, ((𝑦 −
1) mod 5)〉 = 〈0, (2nd ‘〈1, ((𝑦 − 2) mod 5)〉)〉 ∨ 〈0,
((𝑦 − 1) mod 5)〉
= 〈1, (((2nd ‘〈1, ((𝑦 − 2) mod 5)〉) − 2) mod
5)〉)) |
| 14 | 13 | ex 412 |
. . 3
⊢ (𝑦 ∈ (0..^5) →
({〈1, ((𝑦 − 2)
mod 5)〉, 〈0, ((𝑦
− 1) mod 5)〉} ∈ 𝐸 → (〈0, ((𝑦 − 1) mod 5)〉 = 〈1,
(((2nd ‘〈1, ((𝑦 − 2) mod 5)〉) + 2) mod 5)〉
∨ 〈0, ((𝑦 −
1) mod 5)〉 = 〈0, (2nd ‘〈1, ((𝑦 − 2) mod 5)〉)〉 ∨ 〈0,
((𝑦 − 1) mod 5)〉
= 〈1, (((2nd ‘〈1, ((𝑦 − 2) mod 5)〉) − 2) mod
5)〉))) |
| 15 | | c0ex 11174 |
. . . . . . 7
⊢ 0 ∈
V |
| 16 | | ovex 7422 |
. . . . . . 7
⊢ ((𝑦 − 1) mod 5) ∈
V |
| 17 | 15, 16 | opth 5438 |
. . . . . 6
⊢ (〈0,
((𝑦 − 1) mod 5)〉
= 〈1, (((2nd ‘〈1, ((𝑦 − 2) mod 5)〉) + 2) mod 5)〉
↔ (0 = 1 ∧ ((𝑦
− 1) mod 5) = (((2nd ‘〈1, ((𝑦 − 2) mod 5)〉) + 2) mod
5))) |
| 18 | | 0ne1 12258 |
. . . . . . . 8
⊢ 0 ≠
1 |
| 19 | | eqneqall 2937 |
. . . . . . . 8
⊢ (0 = 1
→ (0 ≠ 1 → ¬ {〈1, ((𝑦 − 2) mod 5)〉, 〈0, ((𝑦 − 1) mod 5)〉} ∈
𝐸)) |
| 20 | 18, 19 | mpi 20 |
. . . . . . 7
⊢ (0 = 1
→ ¬ {〈1, ((𝑦
− 2) mod 5)〉, 〈0, ((𝑦 − 1) mod 5)〉} ∈ 𝐸) |
| 21 | 20 | adantr 480 |
. . . . . 6
⊢ ((0 = 1
∧ ((𝑦 − 1) mod 5)
= (((2nd ‘〈1, ((𝑦 − 2) mod 5)〉) + 2) mod 5)) →
¬ {〈1, ((𝑦 −
2) mod 5)〉, 〈0, ((𝑦 − 1) mod 5)〉} ∈ 𝐸) |
| 22 | 17, 21 | sylbi 217 |
. . . . 5
⊢ (〈0,
((𝑦 − 1) mod 5)〉
= 〈1, (((2nd ‘〈1, ((𝑦 − 2) mod 5)〉) + 2) mod 5)〉
→ ¬ {〈1, ((𝑦
− 2) mod 5)〉, 〈0, ((𝑦 − 1) mod 5)〉} ∈ 𝐸) |
| 23 | 22 | a1i 11 |
. . . 4
⊢ (𝑦 ∈ (0..^5) → (〈0,
((𝑦 − 1) mod 5)〉
= 〈1, (((2nd ‘〈1, ((𝑦 − 2) mod 5)〉) + 2) mod 5)〉
→ ¬ {〈1, ((𝑦
− 2) mod 5)〉, 〈0, ((𝑦 − 1) mod 5)〉} ∈ 𝐸)) |
| 24 | 15, 16 | opth 5438 |
. . . . . 6
⊢ (〈0,
((𝑦 − 1) mod 5)〉
= 〈0, (2nd ‘〈1, ((𝑦 − 2) mod 5)〉)〉 ↔ (0 = 0
∧ ((𝑦 − 1) mod 5)
= (2nd ‘〈1, ((𝑦 − 2) mod 5)〉))) |
| 25 | 4, 5 | op2nd 7979 |
. . . . . . . 8
⊢
(2nd ‘〈1, ((𝑦 − 2) mod 5)〉) = ((𝑦 − 2) mod
5) |
| 26 | 25 | eqeq2i 2743 |
. . . . . . 7
⊢ (((𝑦 − 1) mod 5) =
(2nd ‘〈1, ((𝑦 − 2) mod 5)〉) ↔ ((𝑦 − 1) mod 5) = ((𝑦 − 2) mod
5)) |
| 27 | | 5nn 12273 |
. . . . . . . . . . 11
⊢ 5 ∈
ℕ |
| 28 | 27 | nnzi 12563 |
. . . . . . . . . 10
⊢ 5 ∈
ℤ |
| 29 | | uzid 12814 |
. . . . . . . . . 10
⊢ (5 ∈
ℤ → 5 ∈ (ℤ≥‘5)) |
| 30 | 28, 29 | ax-mp 5 |
. . . . . . . . 9
⊢ 5 ∈
(ℤ≥‘5) |
| 31 | | eqid 2730 |
. . . . . . . . . 10
⊢ (0..^5) =
(0..^5) |
| 32 | 31 | modm1nem2 47360 |
. . . . . . . . 9
⊢ ((5
∈ (ℤ≥‘5) ∧ 𝑦 ∈ (0..^5)) → ((𝑦 − 1) mod 5) ≠ ((𝑦 − 2) mod 5)) |
| 33 | 30, 32 | mpan 690 |
. . . . . . . 8
⊢ (𝑦 ∈ (0..^5) → ((𝑦 − 1) mod 5) ≠ ((𝑦 − 2) mod
5)) |
| 34 | | eqneqall 2937 |
. . . . . . . 8
⊢ (((𝑦 − 1) mod 5) = ((𝑦 − 2) mod 5) →
(((𝑦 − 1) mod 5) ≠
((𝑦 − 2) mod 5)
→ ¬ {〈1, ((𝑦
− 2) mod 5)〉, 〈0, ((𝑦 − 1) mod 5)〉} ∈ 𝐸)) |
| 35 | 33, 34 | syl5 34 |
. . . . . . 7
⊢ (((𝑦 − 1) mod 5) = ((𝑦 − 2) mod 5) → (𝑦 ∈ (0..^5) → ¬
{〈1, ((𝑦 − 2)
mod 5)〉, 〈0, ((𝑦
− 1) mod 5)〉} ∈ 𝐸)) |
| 36 | 26, 35 | sylbi 217 |
. . . . . 6
⊢ (((𝑦 − 1) mod 5) =
(2nd ‘〈1, ((𝑦 − 2) mod 5)〉) → (𝑦 ∈ (0..^5) → ¬
{〈1, ((𝑦 − 2)
mod 5)〉, 〈0, ((𝑦
− 1) mod 5)〉} ∈ 𝐸)) |
| 37 | 24, 36 | simplbiim 504 |
. . . . 5
⊢ (〈0,
((𝑦 − 1) mod 5)〉
= 〈0, (2nd ‘〈1, ((𝑦 − 2) mod 5)〉)〉 → (𝑦 ∈ (0..^5) → ¬
{〈1, ((𝑦 − 2)
mod 5)〉, 〈0, ((𝑦
− 1) mod 5)〉} ∈ 𝐸)) |
| 38 | 37 | com12 32 |
. . . 4
⊢ (𝑦 ∈ (0..^5) → (〈0,
((𝑦 − 1) mod 5)〉
= 〈0, (2nd ‘〈1, ((𝑦 − 2) mod 5)〉)〉 → ¬
{〈1, ((𝑦 − 2)
mod 5)〉, 〈0, ((𝑦
− 1) mod 5)〉} ∈ 𝐸)) |
| 39 | 15, 16 | opth 5438 |
. . . . . 6
⊢ (〈0,
((𝑦 − 1) mod 5)〉
= 〈1, (((2nd ‘〈1, ((𝑦 − 2) mod 5)〉) − 2) mod
5)〉 ↔ (0 = 1 ∧ ((𝑦 − 1) mod 5) = (((2nd
‘〈1, ((𝑦 −
2) mod 5)〉) − 2) mod 5))) |
| 40 | 20 | adantr 480 |
. . . . . 6
⊢ ((0 = 1
∧ ((𝑦 − 1) mod 5)
= (((2nd ‘〈1, ((𝑦 − 2) mod 5)〉) − 2) mod 5))
→ ¬ {〈1, ((𝑦
− 2) mod 5)〉, 〈0, ((𝑦 − 1) mod 5)〉} ∈ 𝐸) |
| 41 | 39, 40 | sylbi 217 |
. . . . 5
⊢ (〈0,
((𝑦 − 1) mod 5)〉
= 〈1, (((2nd ‘〈1, ((𝑦 − 2) mod 5)〉) − 2) mod
5)〉 → ¬ {〈1, ((𝑦 − 2) mod 5)〉, 〈0, ((𝑦 − 1) mod 5)〉} ∈
𝐸) |
| 42 | 41 | a1i 11 |
. . . 4
⊢ (𝑦 ∈ (0..^5) → (〈0,
((𝑦 − 1) mod 5)〉
= 〈1, (((2nd ‘〈1, ((𝑦 − 2) mod 5)〉) − 2) mod
5)〉 → ¬ {〈1, ((𝑦 − 2) mod 5)〉, 〈0, ((𝑦 − 1) mod 5)〉} ∈
𝐸)) |
| 43 | 23, 38, 42 | 3jaod 1431 |
. . 3
⊢ (𝑦 ∈ (0..^5) →
((〈0, ((𝑦 − 1)
mod 5)〉 = 〈1, (((2nd ‘〈1, ((𝑦 − 2) mod 5)〉) + 2) mod 5)〉
∨ 〈0, ((𝑦 −
1) mod 5)〉 = 〈0, (2nd ‘〈1, ((𝑦 − 2) mod 5)〉)〉 ∨ 〈0,
((𝑦 − 1) mod 5)〉
= 〈1, (((2nd ‘〈1, ((𝑦 − 2) mod 5)〉) − 2) mod
5)〉) → ¬ {〈1, ((𝑦 − 2) mod 5)〉, 〈0, ((𝑦 − 1) mod 5)〉} ∈
𝐸)) |
| 44 | 14, 43 | syld 47 |
. 2
⊢ (𝑦 ∈ (0..^5) →
({〈1, ((𝑦 − 2)
mod 5)〉, 〈0, ((𝑦
− 1) mod 5)〉} ∈ 𝐸 → ¬ {〈1, ((𝑦 − 2) mod 5)〉, 〈0, ((𝑦 − 1) mod 5)〉} ∈
𝐸)) |
| 45 | 44 | pm2.01d 190 |
1
⊢ (𝑦 ∈ (0..^5) → ¬
{〈1, ((𝑦 − 2)
mod 5)〉, 〈0, ((𝑦
− 1) mod 5)〉} ∈ 𝐸) |