![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pellfundrp | Structured version Visualization version GIF version |
Description: The fundamental Pell solution is a positive real. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
Ref | Expression |
---|---|
pellfundrp | ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pellfundre 38915 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ) | |
2 | 0red 10449 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ∈ ℝ) | |
3 | 1red 10446 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ ℝ) | |
4 | 0lt1 10969 | . . . 4 ⊢ 0 < 1 | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 0 < 1) |
6 | pellfundgt1 38917 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷)) | |
7 | 2, 3, 1, 5, 6 | lttrd 10607 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 0 < (PellFund‘𝐷)) |
8 | 1, 7 | elrpd 12251 | 1 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2051 ∖ cdif 3828 class class class wbr 4934 ‘cfv 6193 0cc0 10341 1c1 10342 < clt 10480 ℕcn 11445 ℝ+crp 12210 ◻NNcsquarenn 38870 PellFundcpellfund 38874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2752 ax-rep 5053 ax-sep 5064 ax-nul 5071 ax-pow 5123 ax-pr 5190 ax-un 7285 ax-inf2 8904 ax-cnex 10397 ax-resscn 10398 ax-1cn 10399 ax-icn 10400 ax-addcl 10401 ax-addrcl 10402 ax-mulcl 10403 ax-mulrcl 10404 ax-mulcom 10405 ax-addass 10406 ax-mulass 10407 ax-distr 10408 ax-i2m1 10409 ax-1ne0 10410 ax-1rid 10411 ax-rnegex 10412 ax-rrecex 10413 ax-cnre 10414 ax-pre-lttri 10415 ax-pre-lttrn 10416 ax-pre-ltadd 10417 ax-pre-mulgt0 10418 ax-pre-sup 10419 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3419 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4182 df-if 4354 df-pw 4427 df-sn 4445 df-pr 4447 df-tp 4449 df-op 4451 df-uni 4718 df-int 4755 df-iun 4799 df-br 4935 df-opab 4997 df-mpt 5014 df-tr 5036 df-id 5316 df-eprel 5321 df-po 5330 df-so 5331 df-fr 5370 df-se 5371 df-we 5372 df-xp 5417 df-rel 5418 df-cnv 5419 df-co 5420 df-dm 5421 df-rn 5422 df-res 5423 df-ima 5424 df-pred 5991 df-ord 6037 df-on 6038 df-lim 6039 df-suc 6040 df-iota 6157 df-fun 6195 df-fn 6196 df-f 6197 df-f1 6198 df-fo 6199 df-f1o 6200 df-fv 6201 df-isom 6202 df-riota 6943 df-ov 6985 df-oprab 6986 df-mpo 6987 df-om 7403 df-1st 7507 df-2nd 7508 df-wrecs 7756 df-recs 7818 df-rdg 7856 df-1o 7911 df-oadd 7915 df-omul 7916 df-er 8095 df-map 8214 df-en 8313 df-dom 8314 df-sdom 8315 df-fin 8316 df-sup 8707 df-inf 8708 df-oi 8775 df-card 9168 df-acn 9171 df-pnf 10482 df-mnf 10483 df-xr 10484 df-ltxr 10485 df-le 10486 df-sub 10678 df-neg 10679 df-div 11105 df-nn 11446 df-2 11509 df-3 11510 df-n0 11714 df-xnn0 11786 df-z 11800 df-uz 12065 df-q 12169 df-rp 12211 df-ico 12566 df-fz 12715 df-fl 12983 df-mod 13059 df-seq 13191 df-exp 13251 df-hash 13512 df-cj 14325 df-re 14326 df-im 14327 df-sqrt 14461 df-abs 14462 df-dvds 15474 df-gcd 15710 df-numer 15937 df-denom 15938 df-squarenn 38875 df-pell1qr 38876 df-pell14qr 38877 df-pell1234qr 38878 df-pellfund 38879 |
This theorem is referenced by: pellfund14 38932 rmbaserp 38953 |
Copyright terms: Public domain | W3C validator |