![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > thinccisod | Structured version Visualization version GIF version |
Description: Two thin categories are isomorphic if the induced preorders are order-isomorphic (deduction form). Example 3.26(2) of [Adamek] p. 33. (Contributed by Zhi Wang, 22-Sep-2025.) |
Ref | Expression |
---|---|
thinccisod.c | ⊢ 𝐶 = (CatCat‘𝑈) |
thinccisod.r | ⊢ 𝑅 = (Base‘𝑋) |
thinccisod.s | ⊢ 𝑆 = (Base‘𝑌) |
thinccisod.h | ⊢ 𝐻 = (Hom ‘𝑋) |
thinccisod.j | ⊢ 𝐽 = (Hom ‘𝑌) |
thinccisod.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
thinccisod.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
thinccisod.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
thinccisod.xt | ⊢ (𝜑 → 𝑋 ∈ ThinCat) |
thinccisod.yt | ⊢ (𝜑 → 𝑌 ∈ ThinCat) |
thinccisod.f | ⊢ (𝜑 → 𝐹:𝑅–1-1-onto→𝑆) |
thinccisod.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) |
Ref | Expression |
---|---|
thinccisod | ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thinccisod.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝑅–1-1-onto→𝑆) | |
2 | f1of 6848 | . . . . 5 ⊢ (𝐹:𝑅–1-1-onto→𝑆 → 𝐹:𝑅⟶𝑆) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝑅⟶𝑆) |
4 | thinccisod.r | . . . . 5 ⊢ 𝑅 = (Base‘𝑋) | |
5 | fvexd 6921 | . . . . 5 ⊢ (𝜑 → (Base‘𝑋) ∈ V) | |
6 | 4, 5 | eqeltrid 2842 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ V) |
7 | 3, 6 | fexd 7246 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
8 | thinccisod.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) | |
9 | 8 | ralrimivva 3199 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) |
10 | 9, 1 | jca 511 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅) ∧ 𝐹:𝑅–1-1-onto→𝑆)) |
11 | fveq1 6905 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
12 | fveq1 6905 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) | |
13 | 11, 12 | oveq12d 7448 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦))) |
14 | 13 | eqeq1d 2736 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) |
15 | 14 | bibi2d 342 | . . . . 5 ⊢ (𝑓 = 𝐹 → (((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ↔ ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅))) |
16 | 15 | 2ralbidv 3218 | . . . 4 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ↔ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅))) |
17 | f1oeq1 6836 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓:𝑅–1-1-onto→𝑆 ↔ 𝐹:𝑅–1-1-onto→𝑆)) | |
18 | 16, 17 | anbi12d 632 | . . 3 ⊢ (𝑓 = 𝐹 → ((∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆) ↔ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅) ∧ 𝐹:𝑅–1-1-onto→𝑆))) |
19 | 7, 10, 18 | spcedv 3597 | . 2 ⊢ (𝜑 → ∃𝑓(∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) |
20 | thinccisod.c | . . 3 ⊢ 𝐶 = (CatCat‘𝑈) | |
21 | eqid 2734 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
22 | thinccisod.s | . . 3 ⊢ 𝑆 = (Base‘𝑌) | |
23 | thinccisod.h | . . 3 ⊢ 𝐻 = (Hom ‘𝑋) | |
24 | thinccisod.j | . . 3 ⊢ 𝐽 = (Hom ‘𝑌) | |
25 | thinccisod.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
26 | thinccisod.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
27 | thinccisod.xt | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ThinCat) | |
28 | 27 | thinccd 48824 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ Cat) |
29 | 26, 28 | elind 4209 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑈 ∩ Cat)) |
30 | 20, 21, 25 | catcbas 18154 | . . . 4 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Cat)) |
31 | 29, 30 | eleqtrrd 2841 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
32 | thinccisod.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
33 | thinccisod.yt | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ ThinCat) | |
34 | 33 | thinccd 48824 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ Cat) |
35 | 32, 34 | elind 4209 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑈 ∩ Cat)) |
36 | 35, 30 | eleqtrrd 2841 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
37 | 20, 21, 4, 22, 23, 24, 25, 31, 36, 27, 33 | thincciso 48848 | . 2 ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ∃𝑓(∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆))) |
38 | 19, 37 | mpbird 257 | 1 ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∃wex 1775 ∈ wcel 2105 ∀wral 3058 Vcvv 3477 ∩ cin 3961 ∅c0 4338 class class class wbr 5147 ⟶wf 6558 –1-1-onto→wf1o 6561 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 Hom chom 17308 Catccat 17708 ≃𝑐 ccic 17842 CatCatccatc 18151 ThinCatcthinc 48818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-map 8866 df-ixp 8936 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-fz 13544 df-struct 17180 df-slot 17215 df-ndx 17227 df-base 17245 df-hom 17321 df-cco 17322 df-cat 17712 df-cid 17713 df-sect 17794 df-inv 17795 df-iso 17796 df-cic 17843 df-func 17908 df-idfu 17909 df-cofu 17910 df-full 17957 df-fth 17958 df-catc 18152 df-thinc 48819 |
This theorem is referenced by: oduoppcciso 48881 |
Copyright terms: Public domain | W3C validator |