Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thinccisod Structured version   Visualization version   GIF version

Theorem thinccisod 48849
Description: Two thin categories are isomorphic if the induced preorders are order-isomorphic (deduction form). Example 3.26(2) of [Adamek] p. 33. (Contributed by Zhi Wang, 22-Sep-2025.)
Hypotheses
Ref Expression
thinccisod.c 𝐶 = (CatCat‘𝑈)
thinccisod.r 𝑅 = (Base‘𝑋)
thinccisod.s 𝑆 = (Base‘𝑌)
thinccisod.h 𝐻 = (Hom ‘𝑋)
thinccisod.j 𝐽 = (Hom ‘𝑌)
thinccisod.u (𝜑𝑈𝑉)
thinccisod.x (𝜑𝑋𝑈)
thinccisod.y (𝜑𝑌𝑈)
thinccisod.xt (𝜑𝑋 ∈ ThinCat)
thinccisod.yt (𝜑𝑌 ∈ ThinCat)
thinccisod.f (𝜑𝐹:𝑅1-1-onto𝑆)
thinccisod.1 ((𝜑 ∧ (𝑥𝑅𝑦𝑅)) → ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
Assertion
Ref Expression
thinccisod (𝜑𝑋( ≃𝑐𝐶)𝑌)
Distinct variable groups:   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem thinccisod
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 thinccisod.f . . . . 5 (𝜑𝐹:𝑅1-1-onto𝑆)
2 f1of 6848 . . . . 5 (𝐹:𝑅1-1-onto𝑆𝐹:𝑅𝑆)
31, 2syl 17 . . . 4 (𝜑𝐹:𝑅𝑆)
4 thinccisod.r . . . . 5 𝑅 = (Base‘𝑋)
5 fvexd 6921 . . . . 5 (𝜑 → (Base‘𝑋) ∈ V)
64, 5eqeltrid 2842 . . . 4 (𝜑𝑅 ∈ V)
73, 6fexd 7246 . . 3 (𝜑𝐹 ∈ V)
8 thinccisod.1 . . . . 5 ((𝜑 ∧ (𝑥𝑅𝑦𝑅)) → ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
98ralrimivva 3199 . . . 4 (𝜑 → ∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
109, 1jca 511 . . 3 (𝜑 → (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) ∧ 𝐹:𝑅1-1-onto𝑆))
11 fveq1 6905 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
12 fveq1 6905 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
1311, 12oveq12d 7448 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓𝑥)𝐽(𝑓𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)))
1413eqeq1d 2736 . . . . . 6 (𝑓 = 𝐹 → (((𝑓𝑥)𝐽(𝑓𝑦)) = ∅ ↔ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
1514bibi2d 342 . . . . 5 (𝑓 = 𝐹 → (((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ↔ ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)))
16152ralbidv 3218 . . . 4 (𝑓 = 𝐹 → (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ↔ ∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)))
17 f1oeq1 6836 . . . 4 (𝑓 = 𝐹 → (𝑓:𝑅1-1-onto𝑆𝐹:𝑅1-1-onto𝑆))
1816, 17anbi12d 632 . . 3 (𝑓 = 𝐹 → ((∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆) ↔ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) ∧ 𝐹:𝑅1-1-onto𝑆)))
197, 10, 18spcedv 3597 . 2 (𝜑 → ∃𝑓(∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆))
20 thinccisod.c . . 3 𝐶 = (CatCat‘𝑈)
21 eqid 2734 . . 3 (Base‘𝐶) = (Base‘𝐶)
22 thinccisod.s . . 3 𝑆 = (Base‘𝑌)
23 thinccisod.h . . 3 𝐻 = (Hom ‘𝑋)
24 thinccisod.j . . 3 𝐽 = (Hom ‘𝑌)
25 thinccisod.u . . 3 (𝜑𝑈𝑉)
26 thinccisod.x . . . . 5 (𝜑𝑋𝑈)
27 thinccisod.xt . . . . . 6 (𝜑𝑋 ∈ ThinCat)
2827thinccd 48824 . . . . 5 (𝜑𝑋 ∈ Cat)
2926, 28elind 4209 . . . 4 (𝜑𝑋 ∈ (𝑈 ∩ Cat))
3020, 21, 25catcbas 18154 . . . 4 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Cat))
3129, 30eleqtrrd 2841 . . 3 (𝜑𝑋 ∈ (Base‘𝐶))
32 thinccisod.y . . . . 5 (𝜑𝑌𝑈)
33 thinccisod.yt . . . . . 6 (𝜑𝑌 ∈ ThinCat)
3433thinccd 48824 . . . . 5 (𝜑𝑌 ∈ Cat)
3532, 34elind 4209 . . . 4 (𝜑𝑌 ∈ (𝑈 ∩ Cat))
3635, 30eleqtrrd 2841 . . 3 (𝜑𝑌 ∈ (Base‘𝐶))
3720, 21, 4, 22, 23, 24, 25, 31, 36, 27, 33thincciso 48848 . 2 (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ ∃𝑓(∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)))
3819, 37mpbird 257 1 (𝜑𝑋( ≃𝑐𝐶)𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wex 1775  wcel 2105  wral 3058  Vcvv 3477  cin 3961  c0 4338   class class class wbr 5147  wf 6558  1-1-ontowf1o 6561  cfv 6562  (class class class)co 7430  Basecbs 17244  Hom chom 17308  Catccat 17708  𝑐 ccic 17842  CatCatccatc 18151  ThinCatcthinc 48818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-fz 13544  df-struct 17180  df-slot 17215  df-ndx 17227  df-base 17245  df-hom 17321  df-cco 17322  df-cat 17712  df-cid 17713  df-sect 17794  df-inv 17795  df-iso 17796  df-cic 17843  df-func 17908  df-idfu 17909  df-cofu 17910  df-full 17957  df-fth 17958  df-catc 18152  df-thinc 48819
This theorem is referenced by:  oduoppcciso  48881
  Copyright terms: Public domain W3C validator