| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > thinccisod | Structured version Visualization version GIF version | ||
| Description: Two thin categories are isomorphic if the induced preorders are order-isomorphic (deduction form). Example 3.26(2) of [Adamek] p. 33. (Contributed by Zhi Wang, 22-Sep-2025.) |
| Ref | Expression |
|---|---|
| thinccisod.c | ⊢ 𝐶 = (CatCat‘𝑈) |
| thinccisod.r | ⊢ 𝑅 = (Base‘𝑋) |
| thinccisod.s | ⊢ 𝑆 = (Base‘𝑌) |
| thinccisod.h | ⊢ 𝐻 = (Hom ‘𝑋) |
| thinccisod.j | ⊢ 𝐽 = (Hom ‘𝑌) |
| thinccisod.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| thinccisod.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| thinccisod.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| thinccisod.xt | ⊢ (𝜑 → 𝑋 ∈ ThinCat) |
| thinccisod.yt | ⊢ (𝜑 → 𝑌 ∈ ThinCat) |
| thinccisod.f | ⊢ (𝜑 → 𝐹:𝑅–1-1-onto→𝑆) |
| thinccisod.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) |
| Ref | Expression |
|---|---|
| thinccisod | ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thinccisod.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝑅–1-1-onto→𝑆) | |
| 2 | f1of 6782 | . . . . 5 ⊢ (𝐹:𝑅–1-1-onto→𝑆 → 𝐹:𝑅⟶𝑆) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝑅⟶𝑆) |
| 4 | thinccisod.r | . . . . 5 ⊢ 𝑅 = (Base‘𝑋) | |
| 5 | fvexd 6855 | . . . . 5 ⊢ (𝜑 → (Base‘𝑋) ∈ V) | |
| 6 | 4, 5 | eqeltrid 2832 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ V) |
| 7 | 3, 6 | fexd 7183 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
| 8 | thinccisod.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) | |
| 9 | 8 | ralrimivva 3178 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) |
| 10 | 9, 1 | jca 511 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅) ∧ 𝐹:𝑅–1-1-onto→𝑆)) |
| 11 | fveq1 6839 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
| 12 | fveq1 6839 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) | |
| 13 | 11, 12 | oveq12d 7387 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦))) |
| 14 | 13 | eqeq1d 2731 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) |
| 15 | 14 | bibi2d 342 | . . . . 5 ⊢ (𝑓 = 𝐹 → (((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ↔ ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅))) |
| 16 | 15 | 2ralbidv 3199 | . . . 4 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ↔ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅))) |
| 17 | f1oeq1 6770 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓:𝑅–1-1-onto→𝑆 ↔ 𝐹:𝑅–1-1-onto→𝑆)) | |
| 18 | 16, 17 | anbi12d 632 | . . 3 ⊢ (𝑓 = 𝐹 → ((∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆) ↔ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅) ∧ 𝐹:𝑅–1-1-onto→𝑆))) |
| 19 | 7, 10, 18 | spcedv 3561 | . 2 ⊢ (𝜑 → ∃𝑓(∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) |
| 20 | thinccisod.c | . . 3 ⊢ 𝐶 = (CatCat‘𝑈) | |
| 21 | eqid 2729 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 22 | thinccisod.s | . . 3 ⊢ 𝑆 = (Base‘𝑌) | |
| 23 | thinccisod.h | . . 3 ⊢ 𝐻 = (Hom ‘𝑋) | |
| 24 | thinccisod.j | . . 3 ⊢ 𝐽 = (Hom ‘𝑌) | |
| 25 | thinccisod.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 26 | thinccisod.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
| 27 | thinccisod.xt | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ThinCat) | |
| 28 | 27 | thinccd 49405 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ Cat) |
| 29 | 26, 28 | elind 4159 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑈 ∩ Cat)) |
| 30 | 20, 21, 25 | catcbas 18043 | . . . 4 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Cat)) |
| 31 | 29, 30 | eleqtrrd 2831 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| 32 | thinccisod.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
| 33 | thinccisod.yt | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ ThinCat) | |
| 34 | 33 | thinccd 49405 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ Cat) |
| 35 | 32, 34 | elind 4159 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑈 ∩ Cat)) |
| 36 | 35, 30 | eleqtrrd 2831 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
| 37 | 20, 21, 4, 22, 23, 24, 25, 31, 36, 27, 33 | thincciso 49435 | . 2 ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ∃𝑓(∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆))) |
| 38 | 19, 37 | mpbird 257 | 1 ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ∩ cin 3910 ∅c0 4292 class class class wbr 5102 ⟶wf 6495 –1-1-onto→wf1o 6498 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 Hom chom 17207 Catccat 17605 ≃𝑐 ccic 17737 CatCatccatc 18040 ThinCatcthinc 49399 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-hom 17220 df-cco 17221 df-cat 17609 df-cid 17610 df-sect 17689 df-inv 17690 df-iso 17691 df-cic 17738 df-func 17800 df-idfu 17801 df-cofu 17802 df-full 17848 df-fth 17849 df-catc 18041 df-thinc 49400 |
| This theorem is referenced by: oduoppcciso 49548 |
| Copyright terms: Public domain | W3C validator |