| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > thinccisod | Structured version Visualization version GIF version | ||
| Description: Two thin categories are isomorphic if the induced preorders are order-isomorphic (deduction form). Example 3.26(2) of [Adamek] p. 33. (Contributed by Zhi Wang, 22-Sep-2025.) |
| Ref | Expression |
|---|---|
| thinccisod.c | ⊢ 𝐶 = (CatCat‘𝑈) |
| thinccisod.r | ⊢ 𝑅 = (Base‘𝑋) |
| thinccisod.s | ⊢ 𝑆 = (Base‘𝑌) |
| thinccisod.h | ⊢ 𝐻 = (Hom ‘𝑋) |
| thinccisod.j | ⊢ 𝐽 = (Hom ‘𝑌) |
| thinccisod.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| thinccisod.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| thinccisod.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| thinccisod.xt | ⊢ (𝜑 → 𝑋 ∈ ThinCat) |
| thinccisod.yt | ⊢ (𝜑 → 𝑌 ∈ ThinCat) |
| thinccisod.f | ⊢ (𝜑 → 𝐹:𝑅–1-1-onto→𝑆) |
| thinccisod.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) |
| Ref | Expression |
|---|---|
| thinccisod | ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thinccisod.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝑅–1-1-onto→𝑆) | |
| 2 | f1of 6764 | . . . . 5 ⊢ (𝐹:𝑅–1-1-onto→𝑆 → 𝐹:𝑅⟶𝑆) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝑅⟶𝑆) |
| 4 | thinccisod.r | . . . . 5 ⊢ 𝑅 = (Base‘𝑋) | |
| 5 | fvexd 6837 | . . . . 5 ⊢ (𝜑 → (Base‘𝑋) ∈ V) | |
| 6 | 4, 5 | eqeltrid 2832 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ V) |
| 7 | 3, 6 | fexd 7163 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
| 8 | thinccisod.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) | |
| 9 | 8 | ralrimivva 3172 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) |
| 10 | 9, 1 | jca 511 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅) ∧ 𝐹:𝑅–1-1-onto→𝑆)) |
| 11 | fveq1 6821 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
| 12 | fveq1 6821 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) | |
| 13 | 11, 12 | oveq12d 7367 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦))) |
| 14 | 13 | eqeq1d 2731 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) |
| 15 | 14 | bibi2d 342 | . . . . 5 ⊢ (𝑓 = 𝐹 → (((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ↔ ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅))) |
| 16 | 15 | 2ralbidv 3193 | . . . 4 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ↔ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅))) |
| 17 | f1oeq1 6752 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓:𝑅–1-1-onto→𝑆 ↔ 𝐹:𝑅–1-1-onto→𝑆)) | |
| 18 | 16, 17 | anbi12d 632 | . . 3 ⊢ (𝑓 = 𝐹 → ((∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆) ↔ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅) ∧ 𝐹:𝑅–1-1-onto→𝑆))) |
| 19 | 7, 10, 18 | spcedv 3553 | . 2 ⊢ (𝜑 → ∃𝑓(∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) |
| 20 | thinccisod.c | . . 3 ⊢ 𝐶 = (CatCat‘𝑈) | |
| 21 | eqid 2729 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 22 | thinccisod.s | . . 3 ⊢ 𝑆 = (Base‘𝑌) | |
| 23 | thinccisod.h | . . 3 ⊢ 𝐻 = (Hom ‘𝑋) | |
| 24 | thinccisod.j | . . 3 ⊢ 𝐽 = (Hom ‘𝑌) | |
| 25 | thinccisod.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 26 | thinccisod.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
| 27 | thinccisod.xt | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ThinCat) | |
| 28 | 27 | thinccd 49418 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ Cat) |
| 29 | 26, 28 | elind 4151 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑈 ∩ Cat)) |
| 30 | 20, 21, 25 | catcbas 18008 | . . . 4 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Cat)) |
| 31 | 29, 30 | eleqtrrd 2831 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| 32 | thinccisod.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
| 33 | thinccisod.yt | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ ThinCat) | |
| 34 | 33 | thinccd 49418 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ Cat) |
| 35 | 32, 34 | elind 4151 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑈 ∩ Cat)) |
| 36 | 35, 30 | eleqtrrd 2831 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
| 37 | 20, 21, 4, 22, 23, 24, 25, 31, 36, 27, 33 | thincciso 49448 | . 2 ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ∃𝑓(∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆))) |
| 38 | 19, 37 | mpbird 257 | 1 ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3044 Vcvv 3436 ∩ cin 3902 ∅c0 4284 class class class wbr 5092 ⟶wf 6478 –1-1-onto→wf1o 6481 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 Hom chom 17172 Catccat 17570 ≃𝑐 ccic 17702 CatCatccatc 18005 ThinCatcthinc 49412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-hom 17185 df-cco 17186 df-cat 17574 df-cid 17575 df-sect 17654 df-inv 17655 df-iso 17656 df-cic 17703 df-func 17765 df-idfu 17766 df-cofu 17767 df-full 17813 df-fth 17814 df-catc 18006 df-thinc 49413 |
| This theorem is referenced by: oduoppcciso 49561 |
| Copyright terms: Public domain | W3C validator |