| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > thinccisod | Structured version Visualization version GIF version | ||
| Description: Two thin categories are isomorphic if the induced preorders are order-isomorphic (deduction form). Example 3.26(2) of [Adamek] p. 33. (Contributed by Zhi Wang, 22-Sep-2025.) |
| Ref | Expression |
|---|---|
| thinccisod.c | ⊢ 𝐶 = (CatCat‘𝑈) |
| thinccisod.r | ⊢ 𝑅 = (Base‘𝑋) |
| thinccisod.s | ⊢ 𝑆 = (Base‘𝑌) |
| thinccisod.h | ⊢ 𝐻 = (Hom ‘𝑋) |
| thinccisod.j | ⊢ 𝐽 = (Hom ‘𝑌) |
| thinccisod.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| thinccisod.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| thinccisod.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| thinccisod.xt | ⊢ (𝜑 → 𝑋 ∈ ThinCat) |
| thinccisod.yt | ⊢ (𝜑 → 𝑌 ∈ ThinCat) |
| thinccisod.f | ⊢ (𝜑 → 𝐹:𝑅–1-1-onto→𝑆) |
| thinccisod.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) |
| Ref | Expression |
|---|---|
| thinccisod | ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thinccisod.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝑅–1-1-onto→𝑆) | |
| 2 | f1of 6817 | . . . . 5 ⊢ (𝐹:𝑅–1-1-onto→𝑆 → 𝐹:𝑅⟶𝑆) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝑅⟶𝑆) |
| 4 | thinccisod.r | . . . . 5 ⊢ 𝑅 = (Base‘𝑋) | |
| 5 | fvexd 6890 | . . . . 5 ⊢ (𝜑 → (Base‘𝑋) ∈ V) | |
| 6 | 4, 5 | eqeltrid 2838 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ V) |
| 7 | 3, 6 | fexd 7218 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
| 8 | thinccisod.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) | |
| 9 | 8 | ralrimivva 3187 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) |
| 10 | 9, 1 | jca 511 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅) ∧ 𝐹:𝑅–1-1-onto→𝑆)) |
| 11 | fveq1 6874 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
| 12 | fveq1 6874 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) | |
| 13 | 11, 12 | oveq12d 7421 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦))) |
| 14 | 13 | eqeq1d 2737 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) |
| 15 | 14 | bibi2d 342 | . . . . 5 ⊢ (𝑓 = 𝐹 → (((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ↔ ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅))) |
| 16 | 15 | 2ralbidv 3205 | . . . 4 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ↔ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅))) |
| 17 | f1oeq1 6805 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓:𝑅–1-1-onto→𝑆 ↔ 𝐹:𝑅–1-1-onto→𝑆)) | |
| 18 | 16, 17 | anbi12d 632 | . . 3 ⊢ (𝑓 = 𝐹 → ((∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆) ↔ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅) ∧ 𝐹:𝑅–1-1-onto→𝑆))) |
| 19 | 7, 10, 18 | spcedv 3577 | . 2 ⊢ (𝜑 → ∃𝑓(∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) |
| 20 | thinccisod.c | . . 3 ⊢ 𝐶 = (CatCat‘𝑈) | |
| 21 | eqid 2735 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 22 | thinccisod.s | . . 3 ⊢ 𝑆 = (Base‘𝑌) | |
| 23 | thinccisod.h | . . 3 ⊢ 𝐻 = (Hom ‘𝑋) | |
| 24 | thinccisod.j | . . 3 ⊢ 𝐽 = (Hom ‘𝑌) | |
| 25 | thinccisod.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 26 | thinccisod.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
| 27 | thinccisod.xt | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ThinCat) | |
| 28 | 27 | thinccd 49257 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ Cat) |
| 29 | 26, 28 | elind 4175 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑈 ∩ Cat)) |
| 30 | 20, 21, 25 | catcbas 18112 | . . . 4 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Cat)) |
| 31 | 29, 30 | eleqtrrd 2837 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| 32 | thinccisod.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
| 33 | thinccisod.yt | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ ThinCat) | |
| 34 | 33 | thinccd 49257 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ Cat) |
| 35 | 32, 34 | elind 4175 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑈 ∩ Cat)) |
| 36 | 35, 30 | eleqtrrd 2837 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
| 37 | 20, 21, 4, 22, 23, 24, 25, 31, 36, 27, 33 | thincciso 49287 | . 2 ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ∃𝑓(∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆))) |
| 38 | 19, 37 | mpbird 257 | 1 ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ∩ cin 3925 ∅c0 4308 class class class wbr 5119 ⟶wf 6526 –1-1-onto→wf1o 6529 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 Hom chom 17280 Catccat 17674 ≃𝑐 ccic 17806 CatCatccatc 18109 ThinCatcthinc 49251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-map 8840 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-fz 13523 df-struct 17164 df-slot 17199 df-ndx 17211 df-base 17227 df-hom 17293 df-cco 17294 df-cat 17678 df-cid 17679 df-sect 17758 df-inv 17759 df-iso 17760 df-cic 17807 df-func 17869 df-idfu 17870 df-cofu 17871 df-full 17917 df-fth 17918 df-catc 18110 df-thinc 49252 |
| This theorem is referenced by: oduoppcciso 49391 |
| Copyright terms: Public domain | W3C validator |