Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thinccisod Structured version   Visualization version   GIF version

Theorem thinccisod 49288
Description: Two thin categories are isomorphic if the induced preorders are order-isomorphic (deduction form). Example 3.26(2) of [Adamek] p. 33. (Contributed by Zhi Wang, 22-Sep-2025.)
Hypotheses
Ref Expression
thinccisod.c 𝐶 = (CatCat‘𝑈)
thinccisod.r 𝑅 = (Base‘𝑋)
thinccisod.s 𝑆 = (Base‘𝑌)
thinccisod.h 𝐻 = (Hom ‘𝑋)
thinccisod.j 𝐽 = (Hom ‘𝑌)
thinccisod.u (𝜑𝑈𝑉)
thinccisod.x (𝜑𝑋𝑈)
thinccisod.y (𝜑𝑌𝑈)
thinccisod.xt (𝜑𝑋 ∈ ThinCat)
thinccisod.yt (𝜑𝑌 ∈ ThinCat)
thinccisod.f (𝜑𝐹:𝑅1-1-onto𝑆)
thinccisod.1 ((𝜑 ∧ (𝑥𝑅𝑦𝑅)) → ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
Assertion
Ref Expression
thinccisod (𝜑𝑋( ≃𝑐𝐶)𝑌)
Distinct variable groups:   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem thinccisod
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 thinccisod.f . . . . 5 (𝜑𝐹:𝑅1-1-onto𝑆)
2 f1of 6817 . . . . 5 (𝐹:𝑅1-1-onto𝑆𝐹:𝑅𝑆)
31, 2syl 17 . . . 4 (𝜑𝐹:𝑅𝑆)
4 thinccisod.r . . . . 5 𝑅 = (Base‘𝑋)
5 fvexd 6890 . . . . 5 (𝜑 → (Base‘𝑋) ∈ V)
64, 5eqeltrid 2838 . . . 4 (𝜑𝑅 ∈ V)
73, 6fexd 7218 . . 3 (𝜑𝐹 ∈ V)
8 thinccisod.1 . . . . 5 ((𝜑 ∧ (𝑥𝑅𝑦𝑅)) → ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
98ralrimivva 3187 . . . 4 (𝜑 → ∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
109, 1jca 511 . . 3 (𝜑 → (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) ∧ 𝐹:𝑅1-1-onto𝑆))
11 fveq1 6874 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
12 fveq1 6874 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
1311, 12oveq12d 7421 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓𝑥)𝐽(𝑓𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)))
1413eqeq1d 2737 . . . . . 6 (𝑓 = 𝐹 → (((𝑓𝑥)𝐽(𝑓𝑦)) = ∅ ↔ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
1514bibi2d 342 . . . . 5 (𝑓 = 𝐹 → (((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ↔ ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)))
16152ralbidv 3205 . . . 4 (𝑓 = 𝐹 → (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ↔ ∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)))
17 f1oeq1 6805 . . . 4 (𝑓 = 𝐹 → (𝑓:𝑅1-1-onto𝑆𝐹:𝑅1-1-onto𝑆))
1816, 17anbi12d 632 . . 3 (𝑓 = 𝐹 → ((∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆) ↔ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) ∧ 𝐹:𝑅1-1-onto𝑆)))
197, 10, 18spcedv 3577 . 2 (𝜑 → ∃𝑓(∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆))
20 thinccisod.c . . 3 𝐶 = (CatCat‘𝑈)
21 eqid 2735 . . 3 (Base‘𝐶) = (Base‘𝐶)
22 thinccisod.s . . 3 𝑆 = (Base‘𝑌)
23 thinccisod.h . . 3 𝐻 = (Hom ‘𝑋)
24 thinccisod.j . . 3 𝐽 = (Hom ‘𝑌)
25 thinccisod.u . . 3 (𝜑𝑈𝑉)
26 thinccisod.x . . . . 5 (𝜑𝑋𝑈)
27 thinccisod.xt . . . . . 6 (𝜑𝑋 ∈ ThinCat)
2827thinccd 49257 . . . . 5 (𝜑𝑋 ∈ Cat)
2926, 28elind 4175 . . . 4 (𝜑𝑋 ∈ (𝑈 ∩ Cat))
3020, 21, 25catcbas 18112 . . . 4 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Cat))
3129, 30eleqtrrd 2837 . . 3 (𝜑𝑋 ∈ (Base‘𝐶))
32 thinccisod.y . . . . 5 (𝜑𝑌𝑈)
33 thinccisod.yt . . . . . 6 (𝜑𝑌 ∈ ThinCat)
3433thinccd 49257 . . . . 5 (𝜑𝑌 ∈ Cat)
3532, 34elind 4175 . . . 4 (𝜑𝑌 ∈ (𝑈 ∩ Cat))
3635, 30eleqtrrd 2837 . . 3 (𝜑𝑌 ∈ (Base‘𝐶))
3720, 21, 4, 22, 23, 24, 25, 31, 36, 27, 33thincciso 49287 . 2 (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ ∃𝑓(∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)))
3819, 37mpbird 257 1 (𝜑𝑋( ≃𝑐𝐶)𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wral 3051  Vcvv 3459  cin 3925  c0 4308   class class class wbr 5119  wf 6526  1-1-ontowf1o 6529  cfv 6530  (class class class)co 7403  Basecbs 17226  Hom chom 17280  Catccat 17674  𝑐 ccic 17806  CatCatccatc 18109  ThinCatcthinc 49251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-struct 17164  df-slot 17199  df-ndx 17211  df-base 17227  df-hom 17293  df-cco 17294  df-cat 17678  df-cid 17679  df-sect 17758  df-inv 17759  df-iso 17760  df-cic 17807  df-func 17869  df-idfu 17870  df-cofu 17871  df-full 17917  df-fth 17918  df-catc 18110  df-thinc 49252
This theorem is referenced by:  oduoppcciso  49391
  Copyright terms: Public domain W3C validator