| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > thinccisod | Structured version Visualization version GIF version | ||
| Description: Two thin categories are isomorphic if the induced preorders are order-isomorphic (deduction form). Example 3.26(2) of [Adamek] p. 33. (Contributed by Zhi Wang, 22-Sep-2025.) |
| Ref | Expression |
|---|---|
| thinccisod.c | ⊢ 𝐶 = (CatCat‘𝑈) |
| thinccisod.r | ⊢ 𝑅 = (Base‘𝑋) |
| thinccisod.s | ⊢ 𝑆 = (Base‘𝑌) |
| thinccisod.h | ⊢ 𝐻 = (Hom ‘𝑋) |
| thinccisod.j | ⊢ 𝐽 = (Hom ‘𝑌) |
| thinccisod.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| thinccisod.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| thinccisod.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| thinccisod.xt | ⊢ (𝜑 → 𝑋 ∈ ThinCat) |
| thinccisod.yt | ⊢ (𝜑 → 𝑌 ∈ ThinCat) |
| thinccisod.f | ⊢ (𝜑 → 𝐹:𝑅–1-1-onto→𝑆) |
| thinccisod.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) |
| Ref | Expression |
|---|---|
| thinccisod | ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thinccisod.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝑅–1-1-onto→𝑆) | |
| 2 | f1of 6763 | . . . . 5 ⊢ (𝐹:𝑅–1-1-onto→𝑆 → 𝐹:𝑅⟶𝑆) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝑅⟶𝑆) |
| 4 | thinccisod.r | . . . . 5 ⊢ 𝑅 = (Base‘𝑋) | |
| 5 | fvexd 6837 | . . . . 5 ⊢ (𝜑 → (Base‘𝑋) ∈ V) | |
| 6 | 4, 5 | eqeltrid 2835 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ V) |
| 7 | 3, 6 | fexd 7161 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
| 8 | thinccisod.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) | |
| 9 | 8 | ralrimivva 3175 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) |
| 10 | 9, 1 | jca 511 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅) ∧ 𝐹:𝑅–1-1-onto→𝑆)) |
| 11 | fveq1 6821 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
| 12 | fveq1 6821 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) | |
| 13 | 11, 12 | oveq12d 7364 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦))) |
| 14 | 13 | eqeq1d 2733 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) |
| 15 | 14 | bibi2d 342 | . . . . 5 ⊢ (𝑓 = 𝐹 → (((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ↔ ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅))) |
| 16 | 15 | 2ralbidv 3196 | . . . 4 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ↔ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅))) |
| 17 | f1oeq1 6751 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓:𝑅–1-1-onto→𝑆 ↔ 𝐹:𝑅–1-1-onto→𝑆)) | |
| 18 | 16, 17 | anbi12d 632 | . . 3 ⊢ (𝑓 = 𝐹 → ((∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆) ↔ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅) ∧ 𝐹:𝑅–1-1-onto→𝑆))) |
| 19 | 7, 10, 18 | spcedv 3548 | . 2 ⊢ (𝜑 → ∃𝑓(∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) |
| 20 | thinccisod.c | . . 3 ⊢ 𝐶 = (CatCat‘𝑈) | |
| 21 | eqid 2731 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 22 | thinccisod.s | . . 3 ⊢ 𝑆 = (Base‘𝑌) | |
| 23 | thinccisod.h | . . 3 ⊢ 𝐻 = (Hom ‘𝑋) | |
| 24 | thinccisod.j | . . 3 ⊢ 𝐽 = (Hom ‘𝑌) | |
| 25 | thinccisod.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 26 | thinccisod.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
| 27 | thinccisod.xt | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ThinCat) | |
| 28 | 27 | thinccd 49523 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ Cat) |
| 29 | 26, 28 | elind 4147 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑈 ∩ Cat)) |
| 30 | 20, 21, 25 | catcbas 18008 | . . . 4 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Cat)) |
| 31 | 29, 30 | eleqtrrd 2834 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| 32 | thinccisod.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
| 33 | thinccisod.yt | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ ThinCat) | |
| 34 | 33 | thinccd 49523 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ Cat) |
| 35 | 32, 34 | elind 4147 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑈 ∩ Cat)) |
| 36 | 35, 30 | eleqtrrd 2834 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
| 37 | 20, 21, 4, 22, 23, 24, 25, 31, 36, 27, 33 | thincciso 49553 | . 2 ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ∃𝑓(∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆))) |
| 38 | 19, 37 | mpbird 257 | 1 ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ∩ cin 3896 ∅c0 4280 class class class wbr 5089 ⟶wf 6477 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 Hom chom 17172 Catccat 17570 ≃𝑐 ccic 17702 CatCatccatc 18005 ThinCatcthinc 49517 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-hom 17185 df-cco 17186 df-cat 17574 df-cid 17575 df-sect 17654 df-inv 17655 df-iso 17656 df-cic 17703 df-func 17765 df-idfu 17766 df-cofu 17767 df-full 17813 df-fth 17814 df-catc 18006 df-thinc 49518 |
| This theorem is referenced by: oduoppcciso 49666 |
| Copyright terms: Public domain | W3C validator |