Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thinccisod Structured version   Visualization version   GIF version

Theorem thinccisod 49079
Description: Two thin categories are isomorphic if the induced preorders are order-isomorphic (deduction form). Example 3.26(2) of [Adamek] p. 33. (Contributed by Zhi Wang, 22-Sep-2025.)
Hypotheses
Ref Expression
thinccisod.c 𝐶 = (CatCat‘𝑈)
thinccisod.r 𝑅 = (Base‘𝑋)
thinccisod.s 𝑆 = (Base‘𝑌)
thinccisod.h 𝐻 = (Hom ‘𝑋)
thinccisod.j 𝐽 = (Hom ‘𝑌)
thinccisod.u (𝜑𝑈𝑉)
thinccisod.x (𝜑𝑋𝑈)
thinccisod.y (𝜑𝑌𝑈)
thinccisod.xt (𝜑𝑋 ∈ ThinCat)
thinccisod.yt (𝜑𝑌 ∈ ThinCat)
thinccisod.f (𝜑𝐹:𝑅1-1-onto𝑆)
thinccisod.1 ((𝜑 ∧ (𝑥𝑅𝑦𝑅)) → ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
Assertion
Ref Expression
thinccisod (𝜑𝑋( ≃𝑐𝐶)𝑌)
Distinct variable groups:   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem thinccisod
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 thinccisod.f . . . . 5 (𝜑𝐹:𝑅1-1-onto𝑆)
2 f1of 6846 . . . . 5 (𝐹:𝑅1-1-onto𝑆𝐹:𝑅𝑆)
31, 2syl 17 . . . 4 (𝜑𝐹:𝑅𝑆)
4 thinccisod.r . . . . 5 𝑅 = (Base‘𝑋)
5 fvexd 6919 . . . . 5 (𝜑 → (Base‘𝑋) ∈ V)
64, 5eqeltrid 2844 . . . 4 (𝜑𝑅 ∈ V)
73, 6fexd 7245 . . 3 (𝜑𝐹 ∈ V)
8 thinccisod.1 . . . . 5 ((𝜑 ∧ (𝑥𝑅𝑦𝑅)) → ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
98ralrimivva 3201 . . . 4 (𝜑 → ∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
109, 1jca 511 . . 3 (𝜑 → (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) ∧ 𝐹:𝑅1-1-onto𝑆))
11 fveq1 6903 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
12 fveq1 6903 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
1311, 12oveq12d 7447 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓𝑥)𝐽(𝑓𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)))
1413eqeq1d 2738 . . . . . 6 (𝑓 = 𝐹 → (((𝑓𝑥)𝐽(𝑓𝑦)) = ∅ ↔ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
1514bibi2d 342 . . . . 5 (𝑓 = 𝐹 → (((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ↔ ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)))
16152ralbidv 3220 . . . 4 (𝑓 = 𝐹 → (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ↔ ∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)))
17 f1oeq1 6834 . . . 4 (𝑓 = 𝐹 → (𝑓:𝑅1-1-onto𝑆𝐹:𝑅1-1-onto𝑆))
1816, 17anbi12d 632 . . 3 (𝑓 = 𝐹 → ((∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆) ↔ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) ∧ 𝐹:𝑅1-1-onto𝑆)))
197, 10, 18spcedv 3597 . 2 (𝜑 → ∃𝑓(∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆))
20 thinccisod.c . . 3 𝐶 = (CatCat‘𝑈)
21 eqid 2736 . . 3 (Base‘𝐶) = (Base‘𝐶)
22 thinccisod.s . . 3 𝑆 = (Base‘𝑌)
23 thinccisod.h . . 3 𝐻 = (Hom ‘𝑋)
24 thinccisod.j . . 3 𝐽 = (Hom ‘𝑌)
25 thinccisod.u . . 3 (𝜑𝑈𝑉)
26 thinccisod.x . . . . 5 (𝜑𝑋𝑈)
27 thinccisod.xt . . . . . 6 (𝜑𝑋 ∈ ThinCat)
2827thinccd 49049 . . . . 5 (𝜑𝑋 ∈ Cat)
2926, 28elind 4199 . . . 4 (𝜑𝑋 ∈ (𝑈 ∩ Cat))
3020, 21, 25catcbas 18142 . . . 4 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Cat))
3129, 30eleqtrrd 2843 . . 3 (𝜑𝑋 ∈ (Base‘𝐶))
32 thinccisod.y . . . . 5 (𝜑𝑌𝑈)
33 thinccisod.yt . . . . . 6 (𝜑𝑌 ∈ ThinCat)
3433thinccd 49049 . . . . 5 (𝜑𝑌 ∈ Cat)
3532, 34elind 4199 . . . 4 (𝜑𝑌 ∈ (𝑈 ∩ Cat))
3635, 30eleqtrrd 2843 . . 3 (𝜑𝑌 ∈ (Base‘𝐶))
3720, 21, 4, 22, 23, 24, 25, 31, 36, 27, 33thincciso 49078 . 2 (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ ∃𝑓(∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)))
3819, 37mpbird 257 1 (𝜑𝑋( ≃𝑐𝐶)𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wral 3060  Vcvv 3479  cin 3949  c0 4332   class class class wbr 5141  wf 6555  1-1-ontowf1o 6558  cfv 6559  (class class class)co 7429  Basecbs 17243  Hom chom 17304  Catccat 17703  𝑐 ccic 17835  CatCatccatc 18139  ThinCatcthinc 49043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751  ax-cnex 11207  ax-resscn 11208  ax-1cn 11209  ax-icn 11210  ax-addcl 11211  ax-addrcl 11212  ax-mulcl 11213  ax-mulrcl 11214  ax-mulcom 11215  ax-addass 11216  ax-mulass 11217  ax-distr 11218  ax-i2m1 11219  ax-1ne0 11220  ax-1rid 11221  ax-rnegex 11222  ax-rrecex 11223  ax-cnre 11224  ax-pre-lttri 11225  ax-pre-lttrn 11226  ax-pre-ltadd 11227  ax-pre-mulgt0 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4906  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-tr 5258  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6319  df-ord 6385  df-on 6386  df-lim 6387  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-riota 7386  df-ov 7432  df-oprab 7433  df-mpo 7434  df-om 7884  df-1st 8010  df-2nd 8011  df-supp 8182  df-frecs 8302  df-wrecs 8333  df-recs 8407  df-rdg 8446  df-1o 8502  df-er 8741  df-map 8864  df-ixp 8934  df-en 8982  df-dom 8983  df-sdom 8984  df-fin 8985  df-pnf 11293  df-mnf 11294  df-xr 11295  df-ltxr 11296  df-le 11297  df-sub 11490  df-neg 11491  df-nn 12263  df-2 12325  df-3 12326  df-4 12327  df-5 12328  df-6 12329  df-7 12330  df-8 12331  df-9 12332  df-n0 12523  df-z 12610  df-dec 12730  df-uz 12875  df-fz 13544  df-struct 17180  df-slot 17215  df-ndx 17227  df-base 17244  df-hom 17317  df-cco 17318  df-cat 17707  df-cid 17708  df-sect 17787  df-inv 17788  df-iso 17789  df-cic 17836  df-func 17899  df-idfu 17900  df-cofu 17901  df-full 17947  df-fth 17948  df-catc 18140  df-thinc 49044
This theorem is referenced by:  oduoppcciso  49146
  Copyright terms: Public domain W3C validator